精英家教网 > 高中数学 > 题目详情
如图,已知F1、F2分别为椭圆的上、下焦点,其中F1也是抛物线的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:(λ≠0且λ≠±1),
求证:点Q总在某条定直线上.

【答案】分析:(1)解法一:利用抛物线的方程和定义即可求出点M的坐标,再利用椭圆的定义即可求出;
解法二:同解法一求出点M的坐标,再利用椭圆的标准方程及参数a,b,c的关系即可求出.
(2)方法一:利用已知向量相等及点A,B在圆上满足圆的方程即可证明;
方法二:利用向量相等、直线与圆相交问题得到根与系数的关系即可证明.
解答:解:(1)解法一:令M为(x,y),因为M在抛物线C2上,故,①
,则
由①②解得
椭圆C1的两个焦点为F1(0,1),F2(0,-1),点M在椭圆上,由椭圆定义,得2a=|MF1|+|MF2|=
∴a=2,又c=1,∴b2=a2-c2=3
∴椭圆C1的方程为
解法二:同上求得M,而点M在椭圆上,故有,即
又c=1,即b2=a2-1,解得a2=4,b2=3∴椭圆C1的方程为
(2)证明:方法一:设A(x1,y1),B(x2,y2),Q(x,y)
,可得(1-x1,3-y1)=-λ(x2-1,y2-3),

,可得(x-x1,y-y1)=λ(x2-x,y2-y),

⑤×⑦得,⑥×⑧得
两式相加,得
又点A,B在圆x2+y2=3上,∴,且λ≠±1
即x+3y=3,故点Q总在直线x+3y=3上
方法二:
,可得(1-x1,3-y1)=-λ(x2-1,y2-3),∴
,可得(x-x1,y-y1)=λ(x2-x,y2-y),∴
,∴(*)
当斜率不存在时,由特殊情况得到
当斜率存在时,设直线为y=k(x-1)+3

代入(*)得,而y=k(x-1)+3,消去k,得x+3y=3
满足方程,∴Q在直线x+3y=3上.
点评:熟练掌握圆锥曲线的定义和性质、向量相等、直线与圆锥曲线的相交问题及根与系数的关系是解题的关键.本题需要较强的计算能力,注意分类讨论的思想方法应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知F1、F2是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则
PF1
PF2
=
 
;椭圆C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知F1,F2是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭一模)如图,已知F1,F2是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
(λ≠0且λ≠±1),
求证:点Q总在某条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知F1、F2是椭圆
x2
172
+
y2
152
=1
的左、右焦点,A是椭圆短轴的一个端点,P是椭圆上任意一点,过F1引∠F1PF2的外角平分线的垂线,垂足为Q,则|AQ|的最大值为
 

查看答案和解析>>

同步练习册答案