精英家教网 > 高中数学 > 题目详情
4.已知a,b是两个正实数.且$\frac{1}{{2}^{a}}$•$\frac{1}{{2}^{b}}$=($\frac{1}{{2}^{a}}$)b,则ab有(  )
A.最小值4B.最大值4C.最小值2D.最大值2

分析 根据指数函数的性质可得a+b=ab,再根据基本不等式即可求出ab的最小值.

解答 解:∵$\frac{1}{{2}^{a}}$•$\frac{1}{{2}^{b}}$=($\frac{1}{{2}^{a}}$)b
∴a+b=ab,
∴ab=a+b≥2$\sqrt{ab}$,
∴$\sqrt{ab}$≥2,
∴ab≥4,当且仅当a=b=2时取等号,
故则ab有最小值为4,
故选:A

点评 本题考查了指数函数的性质和基本不等式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.某同学用五点法画函数f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3x}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式f(x)=5sin(2x-$\frac{π}{6}$);
(2)若函数f(x)的图象向左平移$\frac{π}{6}$个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心(-$\frac{π}{12}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线的顶点在原点,对称轴是x轴,抛物线上点(-5,m)到焦点距离是6,则抛物线的方程是(  )
A.y2=-2xB.y2=-4xC.y2=2xD.y2=-4x或y2=4x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=|log3x|,若函数y=f(x)-m有两个不同的零点a,b,则(  )
A.a+b=1B.a+b=3mC.ab=1D.b=am

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)={e^x}-f(0)x+\frac{1}{2}{x^2}$,则f'(1)=e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设等差数列{an}的前n项和为Sn,a22=37,S22=352.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n+3}•{a}_{n+4}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,正方形边长是2,直线x+y-3=0与正方形交于两点,向正方形内投飞镖,则飞镖落在阴影部分内的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点分别为F1,F2,点D是椭圆C上一动点当△DF1F2的面积取得最大值1时,△DF1F2为直角三角形.
(1)椭圆C的方程.
(2)已知点P是椭圆C上的一点,则过点P(x0,y0)的切线的方程为$\frac{x{x}_{0}}{{a}^{2}}$+$\frac{y{y}_{0}}{{b}^{2}}$=1.过直线l:x=2上的任意点M引椭圆C的两条切线,切点分别为A,B,求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,过点A(0,-b)和B(a,0)的直线与原点的距离为$\frac{\sqrt{3}}{2}$.
(1)求椭圆的方程.
(2)已知定点E(-1,0),是否存在k的值,使得直线y=kx+2(k≠0)与椭圆交于C、D两点.且EC⊥ED,并说明理由.

查看答案和解析>>

同步练习册答案