精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的长轴长为,右顶点到左焦点的距离为分别为椭圆的左、右两个焦点.

1)求椭圆的方程;

2)已知椭圆的切线(与椭圆有唯一交点)的方程为,切线与直线和直线分别交于点,求证:为定值,并求此定值;

3)设矩形的四条边所在直线都和椭圆相切(即每条边所在直线与椭圆有唯一交点),求矩形的面积的取值范围.

【答案】1;(2)证明见解析,;(3

【解析】

1)由长轴长可得,由右顶点到左焦点的距离为,进而求解即可;

2)联立可得,由相切可得,,分别求得,,代入,进而求解即可;

3)分别讨论的情况,,设直线,,联立直线与椭圆方程,可得,即可代回求得直线的方程,进而求得直线与直线的距离,同理求得直线与直线的距离,从而利用均值不等式求解.

1)由题,因为,,

所以,,,

所以椭圆的标准方程为.

2)证明:由(1,

联立可得,

所以,,

对于切线:,

,;当,,

所以,

,

所以,为定值.

3)由题,,

,设边所在直线为切线:,

所以,

联立可得,

,,

所以直线的方程为;直线的方程为,

所以直线和直线的距离为,

同理,直线和直线的距离为,

所以,

因为,当且仅当,时等号成立,

所以,

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的标准方程是,设是椭圆的左焦点,为直线上任意一点,过的垂线交椭圆于点.

1)证明:线段平分线段(其中为坐标原点);

2)当最小时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,当x[01]时,fx)=x,若在区间(﹣11]内,有两个零点,则实数m的取值范围是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间和极值;

2)当时,若不等式恒成立,求实数的取值范围;

3)若存在,且当时,,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中e为自然对数的底数).

1)当时,讨论函数的单调性;

2)当时,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到直线的距离为,过点的直线交于两点.

1)求抛物线的准线方程;

2)设直线的斜率为,直线的斜率为,若,且的交点在抛物线上,求直线的斜率和点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的无穷数列,数列满足(n),其中常数k为正整数.

1)设数列n项的积,当k2时,求数列的通项公式;

2)若是首项为1,公差d为整数的等差数列,且4,求数列的前2020项的和;

3)若是等比数列,且对任意的n,其中k≥2,试问:是等比数列吗?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:

①设是空间中的三条直线,若,,则.

②在面积为的边上任取一点,则的面积大于的概率为.

③已知一个回归直线方程为,则.

④数列为等差数列的充要条件是其通项公式为的一次函数.

其中正确命题的充号为________.(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标Z来衡量产品的质量.时,产品为优等品;当时,产品为一等品;当时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.

1)从该企业生产的所有产品中随机抽取4件,求至少有1件优等品的概率;

2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测,买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为X元,求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案