精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:

(1)PA⊥底面ABCD;

(2)平面BEF⊥平面PCD.

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)根据条件,易证四边形是平行四边形,所以平面平面,所以平面

2)由条件易证平面,所以平面,根据中点,,所以,那么可证明平面平面,根据面面垂直的判定定理,平面平面

试题解析:证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD

因为AB∥CDCD=2ABECD的中点,所以AB∥DE,且AB=DE

所以ABED为平行四边形,所以BE∥AD

又因为平面PADAD平面PAD,所以BE∥平面PAD

2)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CDAD⊥CD

由(1)知PA⊥底面ABCD,所以PA⊥CD,因为PAAD=A

所以CD⊥平面PAD,所以CD⊥PD

因为EF分别是CDPC的中点,所以PD∥EF,所以CD⊥EF

EFBE=E,所以CD⊥平面BEF

所以平面BEF⊥平面PCD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题p:直线mx﹣y+1=0与圆(x﹣2)2+y2=4有公共点;设命题q:实数m满足方程 + =1表示双曲线.
(1)若“p∧q”为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量毫克与时间小时成正比;药物释放完毕后,的函数关系式为为常数,如图所示.据图中提供的信息,回答下列问题:

1写出从药物释放开始,每立方米空气中的含药量毫克与时间小时之间的函数关系式;

2据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.

组号

年龄

访谈人数

愿意使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?

年龄不低于48岁的人数

年龄低于48岁的人数

合计

愿意使用的人数

不愿意使用的人数

合计

参考公式: ,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD的底面为正方形,SD⊥底面ABCD,则下列结论

ACSB

AB∥平面SCD

SA与平面ABD所成的角等于SC与平面ABD所成的角

ABSC所成的角等于DCSA所成的角.

⑤二面角的大小为

其中,正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, 的中点,将沿折起,使间的距离为则点到平面的距离为(

A. B. C. 1 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数上单调递增.

1)求实数的值,并写出相应的函数的解析式;

(2)若在区间上不单调,求实数的取值范围;

(3)试判断是否存在正数使函数在区间上的值域为若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙俩人各进行3次射击,甲每次击中目标的概率为 ,乙每次击中目标的概率为 . (Ⅰ)记甲恰好击中目标2次的概率;
(Ⅱ)求乙至少击中目标2次的概率;
(Ⅲ)求乙恰好比甲多击中目标2次的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的中点为直线的交点,正方形一边所在直线的方程为,求其他三边所在直线的方程.

查看答案和解析>>

同步练习册答案