精英家教网 > 高中数学 > 题目详情

【题目】已知点,点,直线l(其中).

Ⅰ)求直线l所经过的定点P的坐标;

Ⅱ)若分别过AB且斜率为的两条平行直线截直线l所得线段的长为,求直线的方程.

【答案】(1)直线l过定点.(2)

【解析】

()根据直线过定点,化简直线方程,得到关于 的表达式,令系数与常数分别为0即可求得过定点的坐标。

()根据平行线间距离公式,求得平行线间距离;由倾斜角与直线夹角关系,求得直线的方程。

解:()直线方程可化为:

解得即直线l过定点.

() 由平行线的斜率为得其倾斜角为,又水平线段

所以两平行线间距离为,而直线被截线段长为

所以被截线段与平行线所成夹角为,即直线与两平行线所成夹角为

所以直线倾斜角为

(),直线l过定点,则所求直线为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的值域;

(2)当时,函数的图象关于对称,求函数的对称轴.

(3)若图象上有一个最低点,如果图象上每点纵坐标不变,横坐标缩短到原来的倍,然后向左平移1个单位可得的图象,又知的所有正根从小到大依次为,且,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定直线抛物线且抛物线的焦点在直线

(1)求抛物线的方程

(2)若的三个顶点都在抛物线且点的纵坐标 的重心恰是抛物线的焦点,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,将四边形ABCD沿着BD折叠,得到图2所示的三棱锥A﹣BCD,其中AB⊥CD.
(1)证明:平面ACD⊥平面BAD;
(2)若F为CD中点,求二面角C﹣AB﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x+)2+y2=16,点A(,0),Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E.

(1)求轨迹E的方程;

(2)过点P(1,0)的直线交轨迹E于两个不同的点A,B,△AOB(O是坐标原点)的面积S=,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列的首项 是数列的前项和,且满足:

.

(1)若成等比数列,求实数的值;

(2)若,求证:数列为等差数列;

(3)在(2)的条件下,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)将函数y=sin2x的图象向左平移 个单位,向下平移b个单位,得到函数y=f(x)的图象,求ab的值;
(Ⅲ)求函数f(x)在 上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,设动点满足.

1)求动点的轨迹的方程;

2)若直线与曲线相交于 两个不同点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:关于x的不等式|x﹣2|+|x+2|>m的解集是R; q:关于x的不等式x2+mx+4>0的解集是R.则p成立是q成立的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.即不充分也不必要条件

查看答案和解析>>

同步练习册答案