精英家教网 > 高中数学 > 题目详情
9.在(2x-1)7的二项展开式中,第四项的系数为-560.

分析 直接利用二项式定理写出结果即可即可.

解答 解:在(2x-1)7的二项展开式中,第四项的系数为:${C}_{7}^{3}•{2}^{4}•{(-1)}^{3}$=-560.
故答案为:-560.

点评 本题考查二项式定理的应用,系数的求法,注意二项式系数与项的系数的区别.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{{\begin{array}{l}{{3^x},x>0}\\{x+5,x≤0}\end{array}}\right.$,则f(f(-3))=(  )
A.$\frac{1}{27}$B.2C.-27D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l经过A(4,0),B(0,3),求直线l1的方程,使得:
(Ⅰ)l1∥l,且经过点C(-1,3);
(Ⅱ)l1⊥l,且与两坐标轴围成的三角形的面积为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定义在R上的奇函数y=f(x),满足对任意t∈R都有f(t)=f(1-t),且$x∈[0,\frac{1}{2}]$时,f(x)=-x2,则f(2015)的值等于(  )
A.$-\frac{1}{2}$B.$-\frac{1}{4}$C.0D.$-\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.i是虚数单位,则$\frac{i}{i(1+i)}$的模为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下面表中所示:
性别
是否需要帮助  
合计
需要502575
不需要200225425
合计250250500
(1)请根据上表的数据,估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否在出错的概率不超过1%的前提下,认为该地老年人是否需要帮助与性别有关?并说明理由;
(3)根据(2)的结论,你能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?并说明理由.
附:独立性检验卡方统计量${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量,独立性检验临界值表为:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;  
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中正确的是(  )
A.②③都不可能为系统抽样B.②④都不可能为分层抽样
C.①④都可能为系统抽样D.①③都可能为分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某商店经销一种洗衣粉,年销售总量为6 000包,每包进价为2.8元,销售价为3.4元,全年分若干次进货,每次进货均为x包,已知每次进货运输费为62.5元,全年保管费为1.5x元,求使利润最大的x的值,并求出最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过点P(1,1)的直线与圆(x-2)2+(y-3)2=9相交于A,B两点,则|AB|的最小值为4.

查看答案和解析>>

同步练习册答案