精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,满足an+Sn=3-
8
2n
,设bn=2nan
(1)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(2)求数列{an•bn}中最大项;
(3)求证:对于给定的实数λ,一定存在正整数k,使得当n≥k时,不等式λSn<bn恒成立.
(1)证明:∵an+Sn=3-
8
2n

∴n≥2时,an-1+Sn-1=3-
8
2n-1

两式相减可得2an-an-1=
8
2n-1
-
8
2n

2an-an-1=
4
2n-1

2nan-2n-1an-1=4
bn=2nan
∴bn-bn-1=4
∵n=1时,a1+S1=3-
8
21
,∴a1=-
1
2

b1=21a1=-1
∴数列{bn}是以-1为首项,4为公差的等差数列
bn=4n-5,an=
4n-5
2n

(2)an•bn=
(4n-5)2
2n

令f(n)=
(4n-5)2
2n
,则
f(n+1)
f(n)
=
(4n-1)2
2(4n-5)2

(4n-1)2
2(4n-5)2
<1,则16n2-72n+49>0
∴n>5时,
f(n+1)
f(n)
<1,n<5时,
f(n+1)
f(n)
>1
∴数列从第一项到第四项,单调递增,从第五项开始,单调递减
所以最大项是第四项
121
16

(3)证明:∵an=
4n-5
2n

∴数列{an}的前n项和为Sn=(-1)×
1
2
+
1
22
+…+(4n-5)×
1
2n

1
2
Sn=(-1)×
1
22
+…+(4n-9)×
1
2n
+(4n-5)×
1
2n+1

两式相减可得
1
2
Sn=(-1)×
1
2
+
1
22
+…+
1
2n
-(4n-5)×
1
2n+1

∴Sn=3-(4n+3)×
1
2n

∴S1=-
1
2

∴Sn的值域[-
1
2
,3),
∵bn=4n-5,∴bn的值域[-1,+∞),
∴对于给定的实数λ,一定存在正整数k,使得当n≥k时,不等式λSn<bn恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案