【题目】已知右焦点为的椭圆关于直线对称的图形过坐标原点.
是椭圆的左顶点,斜率为的直线交于,两点,点在上,.
(Ⅰ)当时,求的面积;
(Ⅱ)当时,证明:.
【答案】(Ⅰ);
(Ⅱ)证明详见解析
【解析】
(Ⅰ)由椭圆关于直线的对称图形过原点,可得a、c的关系,再由a、b、c的关系,可得a、c的值,进而求得椭圆方程,由可知两线段关于x轴对称,直线AM倾斜角为,求出直线方程,与椭圆方程联立求得交点坐标,进而求得三角形面积.
(Ⅱ)用设而不求的方式,分别假设两条直线方程,并求出弦长,且两直线斜率互为负倒数,根据两弦长之间的斜率关系,得出斜率k的方程,根据函数与方程的关系,通过求导分析,证明结论.
(Ⅰ)由题意得椭圆的焦点在轴上,∵椭圆关于直线对称的图形过坐标原点,∴,∵,∴,解得.∴椭圆的方程为.设,则由题意知.
由已知及椭圆的对称性知,直线的倾斜角为,
又,因此直线的方程为.
将代入得,
解得或,所以.
因此的面积.
(2)将直线的方程代入得
.
由得,故.
由题设,直线的方程为,故同理可得.
由得,即.
设,则是的零点,,
所以在单调递增,又,,
因此在有唯一的零点,且零点在内,所以.
科目:高中数学 来源: 题型:
【题目】如图4,在四棱锥中,底面,底面为直角梯形,,过作平面分别交线段于点.
(1)证明:;
(2)若直线与平面所成的线面角的正切值为,则当点在线段的何处时,直线与平面所成角为?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),其中为直线的倾斜角.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)若点的极坐标为,直线经过点且与曲线相交于两点,求两点间的距离的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量y(单位:万件)的影响,统计了近10年投入的年研发费用x,与年销售量的数据,得到散点图如图所示:
(1)利用散点图判断,和(其中 为大于0的常数)哪一个更适合作为年研发费用和年销售量的回归方程类型(只要给出判断即可,不必说明理由).
(2)对数据作出如下处理:令,,得到相关统计量的值如下表:
15 | 15 | 28.25 | 56.5 |
根据(1)的判断结果及表中数据,求关于的回归方程;
(3)已知企业年利润z(单位:千万元)与,的关系为(其中…),根据(2)的结果,要使得该企业下年的年利润最大,预计下一年应投入多少研发费用?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某IT从业者绘制了他在26岁~35岁(2009年~2018年)之间各年的月平均收入(单位:千元)的散点图:
(1)由散点图知,可用回归模型拟合与的关系,试根据附注提供的有关数据建立关于的回归方程
(2)若把月收入不低于2万元称为“高收入者”.
试利用(1)的结果,估计他36岁时能否称为“高收入者”?能否有95%的把握认为年龄与收入有关系?
附注:①.参考数据:,,,,,,,其中,取,
②.参考公式:回归方程中斜率和截距的最小二乘估计分别为:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017-2018学年安徽省六安市第一中学高三上学期第二次月考)已知函数是偶函数.
(1)求的值;
(2)若函数的图象与直线没有交点,求的取值范围;
(3)若函数,是否存在实数使得的最小值为0,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于的不等式,下列结论正确的是( )
A.当时,不等式的解集为
B.当,时,不等式的解集为
C.当时,不等式的解集可以为的形式
D.不等式的解集恰好为,那么
E.不等式的解集恰好为,那么
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-3|-|x+1|.
(1)求f(x)的值域;
(2)解不等式:f(x)>0;
(3)若直线y=a与f(x)的图像无交点,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com