精英家教网 > 高中数学 > 题目详情
已知n是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明(  )
A.n=k+1时命题成立
B.n=k+2时命题成立
C.n=2k+2时命题成立
D.n=2(k+2)时命题成立
B
因n是正偶数,故只需证等式对所有偶数都成立,因k的下一个偶数是k+2,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明不等式:>1(n∈N*且n>1).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(11分)探究:是否存在常数abc使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)
对对一切正自然数n均成立,若存在求出abc,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明)时,从“n=”到“n=”的证明,左边需增添的代数式是___________. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N)能被9整除”,要利
用归纳法假设证nk+1时的情况,只需展开(  ).
A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在圆内:画1条弦,把圆分成2部分;画2条相交的弦,把圆分成4部分,画3条两两相交的弦,把圆最多分成7部分;…,画条两两相交的弦,把圆最多分成            部分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是等差数列,N+),
 N+),问Pn与Qn哪一个大?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(n)=1+++…+(n∈N*),用数学归纳法证明f(2n)>时,f(2k+1)-f(2k)等于   .

查看答案和解析>>

同步练习册答案