精英家教网 > 高中数学 > 题目详情
已知P(cosα,sinα)、Q(cosβ,sinβ),则||的最大值为(    )

A.                 B.2                C.4                  D.2

思路解析:=(cosβ-cosα,sinβ-sinα),

∴||=,

当cos(α-β)=-1时,||最大=2.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知S={θ|f(x)=cosω(x+θ)(ω∈N+)是奇函数},P={x|
1-x2
+
|x|
x
≥0
},若S∩P=∅,则ω是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)设△ABC的内角A,B,C的对边分别为a,b,c,已知向量,
m
=(a,-c)
n
=(cosA,cosB)
p
=(a,b)
q
=(cos(B+C),cosC)
m
n
=
p
q
,a=
13
,c=4

(1)求cosA的值;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知函数:
①f(x)=-x2+2x,
②f(x)=cos(
π
2
-
πx
2
),
③f(x)=|x-1|
1
2
.则以下四个命题对已知的三个函数都能成立的是(  )
命题p:f(x)是奇函数;       
命题q:f(x+1)在(0,1)上是增函数;
命题r:f(
1
2
1
2
;            
命题s:f(x)的图象关于直线x=1对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴一模)如图,在直角三角形OAB中,P,Q是斜边AB的两个三等分点,已知|
OP
|=sinα
,且|
OQ
|
=cosα(0<α<
π
2
)

(1)若2sinα+cosα=
11
5
,求tanα的值;
(2)试判断|
AB
|
是否为定值,并说明理由;
(3)求△OPQ的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α终边上一点P(-
3
,1)
(1)求
cos(
π
2
+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
的值
(2)写出角α的集合S.

查看答案和解析>>

同步练习册答案