精英家教网 > 高中数学 > 题目详情

【题目】南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:幂势既同,则积不容异”. 其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则相等总相等

A. 充分而不必要条件B. 必要而不充分条件

C. 充分必要条件D. 既不充分也不必要条件

【答案】B

【解析】

由题“总相等”一定能推出“相等”,反之举反例即可

由祖暅原理知:“总相等”一定能推出“相等”,反之:若两个同样的圆锥,一个倒放,一个正放,则体积相同,截面面积不一定相同

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面,,中点.

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,为梯形的高,将沿折到的位置,使得.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的底面是等边三角形,侧面底面是棱的中点.

(1)求证:平面平面

(2)求平面将该三棱柱分成上下两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.

1)若最大拱高h6米,则隧道设计的拱宽l是多少?

2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程量最最小?(半个椭圆的面积公式为,柱体体积为:底面积乘以高.本题结果精确到0.1米)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了进一步推动全市学习型党组织、学习型社会建设,某市组织开展“学习强国”知识测试,每人测试文化、经济两个项目,每个项目满分均为60分.从全体测试人员中随机抽取了100人,分别统计他们文化、经济两个项目的测试成绩,得到文化项目测试成绩的频数分布表和经济项目测试成绩的频率分布直方图如下:

经济项目测试成绩频率分布直方图

分数区间

频数

2

3

5

15

40

35

文化项目测试成绩频数分布表

将测试人员的成绩划分为三个等级如下:分数在区间内为一般,分数在区间内为良好,分数在区间内为优秀.

(1)在抽取的100人中,经济项目等级为优秀的测试人员中女生有14人,经济项目等级为一般或良好的测试人员中女生有34人.填写下面列联表,并根据列联表判断是否有以上的把握认为“经济项目等级为优秀”与性别有关?

优秀

一般或良好

合计

男生数

女生数

合计

(2)用这100人的样本估计总体.

(i)求该市文化项目测试成绩中位数的估计值.

(ii)对该市文化项目、经济项目的学习成绩进行评价.

附:

0.150

0.050

0.010

2.072

3.841

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于项数为)的有穷正整数数列,记),即中的最大值,称数列为数列的“创新数列”.比如的“创新数列”为.

1)若数列的“创新数列”为1,2,3,4,4,写出所有可能的数列

2)设数列为数列的“创新数列”,满足),求证: );

3)设数列为数列的“创新数列”,数列中的项互不相等且所有项的和等于所有项的积,求出所有的数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的面积为,且满足,则边的最小值为_______.

查看答案和解析>>

同步练习册答案