精英家教网 > 高中数学 > 题目详情

【题目】设函数 ,其中[x]表示不超过x的最大整数,若直线y=kx+k(k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是

【答案】[
【解析】解:∵函数 , ∴函数的图象如下图所示:

∵y=kx+k=k(x+1),故函数图象一定过(﹣1,0)点
若f(x)=kx+k有三个不同的根,
则y=kx+k与y=f(x)的图象有三个交点
当y=kx+k过(2,1)点时,k=
当y=kx+k过(3,1)点时,k=
故f(x)=kx+k有三个不同的根,则实数k的取值范围是[
【考点精析】解答此题的关键在于理解函数的零点与方程根的关系的相关知识,掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“三角保型函数”,给出下列函数: ①f(x)= ;②f(x)=x2;③f(x)=2x;④f(x)=lgx,
其中是“三角保型函数”的是(
A.①②
B.①③
C.②③④
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为R,它的导函数y=f′(x)的部分图象如图所示,则下面结论正确的是(
A.在(1,2)上函数f(x)为增函数
B.在(3,4)上函数f(x)为减函数
C.在(1,3)上函数f(x)有极大值
D.x=3是函数f(x)在区间[1,5]上的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=2ln(x+m).
(1)当m=0,存在x0∈[ ,e](e为自然对数的底数),使 ,求实数a的取值范围;
(2)当a=m=1时,设H(x)=xf(x)+g(x),在H(x)的图象上是否存在不同的两点A(x1 , y1),B(x2 , y2)(x1>x2>﹣1),使得H(x1)﹣H(x2)= ?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数y=f(x)在区间(﹣∞,﹣1]上是增函数,则下列不等式成立的是(
A.f(﹣1)>f(
B.f( )>f(﹣ )??
C.f(4)>f(3)
D.f(﹣ )>f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(x+ ).求:
(1)f(﹣8);
(2)f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一条笔直公路上有AB两地,甲骑自行车从A地到B地,乙骑着摩托车从B地到A地,到达A地后立即按原路返回,如图是甲乙两人离A地的距离与行驶时间之间的函数图象,根据图象解答以下问题:

直接写出x之间的函数关系式不必写过程,求出点M的坐标,并解释该点坐标所表示的实际意义;

若两人之间的距离不超过5km时,能够用无线对讲机保持联系,求在乙返回过程中有多少分钟甲乙两人能够用无线对讲机保持联系;

若甲乙两人离A地的距离之积为,求出函数的表达式,并求出它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四人进行选择题解题比赛,已知每个选择题选择正确得分,否则得分.其测试结果如下:甲解题正确的个数小于乙解题正确的个数,乙解题正确的个数小于丙解题正确的个数,丙解题正确的个数小于丁解题正确的个数;且丁解题正确的个数的倍小于甲解题正确的个数的倍,则这四人测试总得分数最少为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察某种药物预防疾病的效果,进行动物试验,调查了 105 个样本,统计结果为:服药的共有 55 个样本,服药但患病的仍有 10 个样本,没有服药且未患病的有 30个样本.

(1)根据所给样本数据完成 列联表中的数据;

(2)请问能有多大把握认为药物有效?

(参考公式:独立性检验临界值表

概率

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

患病

不患病

合计

服药

没服药

合计

查看答案和解析>>

同步练习册答案