精英家教网 > 高中数学 > 题目详情
12.已知△ABC的两个顶点A,B分别为椭圆x2+5y2=5的左焦点和右焦点,且三个内角A,B,C满足关系式sinB-sin A=sinC.
(1)求线段AB的长度;
(2)求顶点C的轨迹方程.

分析 (1)化简椭圆为标准方程,求出a,b,c,即可求解线段AB的长度.
(2利用正弦定理转化已知条件为线段方程,利用双曲线定义求解轨迹方程即可.

解答 解:(1)将椭圆方程化为标准形式为$\frac{{x}^{2}}{5}$+y2=1.
∴a2=5,b2=1,c2=a2-b2=4,
则A(-2,0),B(2,0),|AB|=4.
(2)∵sin B-sin A=sin C,
∴由正弦定理得
|CA|-|CB|=|AB|=2<|AB|=4,
即动点C到两定点A,B的距离之差为定值.
∴动点C的轨迹是双曲线的右支,并且c=2,a=1,
∴所求的点C的轨迹方程为x2-$\frac{{y}^{2}}{3}$=1(x>1).

点评 本题考查椭圆的简单性质,轨迹方程的求法,双曲线的定义的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设p:x2-x-20>0,q:5<x<9,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=blnx.
(1)当b=1时,求函数G(x)=x2-x-f(x)在区间$[{\frac{1}{2},e}]$上的最大值与最小值;
(2)若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则数列{an}的通项公式an=$\left\{\begin{array}{l}{1,n=1}\\{3×{4}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知命题p:?x∈R使得x2+x+1<0;命题q:?x∈[-1,2],使得x2-1>0,则p∧¬q的真假为假.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{{\begin{array}{l}{({a-2})x+3,x≤1}\\{\frac{2a}{x},x>1}\end{array}}\right.$在(-∞,+∞)上是减函数,则a的取值范围为(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是(  )
A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在正项等比数列{an}中,lga3+lga6+lga9=3,则a1a11的值是100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若过点P(2,2)可以向圆x2+y2-2kx-2y+k2-k=0作两条切线,则实数k的取值范围是(-1,1)∪(4,+∞).

查看答案和解析>>

同步练习册答案