精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ.
(1)求出圆C的直角坐标方程;
(2)已知圆C与x轴相交于A,B两点,直线l:y=2x关于点M(0,m)(m≠0)对称的直线为l'.若直线l'上存在点P使得∠APB=90°,求实数m的最大值.

【答案】
(1)

解:由ρ=4cosθ得ρ2=4ρcosθ,即x2+y2﹣4x=0,即圆C的标准方程为(x﹣2)2+y2=4


(2)

解:l:y=2x关于点M(0,m)的对称直线l'的方程为y=2x+2m,而AB为圆C的直径,故直线l'上存在点P使得∠APB=90°的充要条件是直线l'与圆C有公共点,故 ,于是,实数m的最大值为


【解析】(1)由ρ=4cosθ得ρ2=4ρcosθ,即可求出圆C的直角坐标方程;
(2)l:y=2x关于点M(0,m)的对称直线l'的方程为y=2x+2m,而AB为圆C的直径,故直线l'上存在点P使得∠APB=90°的充要条件是直线l'与圆C有公共点,即可求实数m的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b∈(0,+∞),且2a4b=2. (Ⅰ)求 的最小值;
(Ⅱ)若存在a,b∈(0,+∞),使得不等式 成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为9元,被随机分配为1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1nx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:当x>0时,
(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,函数f(x)=
(Ⅰ)求函数y=f(x)图象的对称轴方程;
(Ⅱ)若方程f(x)= 在(0,π)上的解为x1 , x2 , 求cos(x1﹣x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·新课标I卷)选修4-5:不等式选讲
已知函数f(x)=|x+1|-2|x-a|, a>0.
(1)当a=1时求不等式f(x)>1的解集;
(2)若f(x)图像与x轴围成的三角形面积大于6,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本
中,青年教师有320人,则该样本的老年教师人数为( )

A.90
B.100
C.180
D.300

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,则cosα﹣sinα= , sin2α=

查看答案和解析>>

同步练习册答案