精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= (a>0,且a≠1)的图象上关于y轴对称的点至少有5对,则实数a的取值范围是(
A.(0,
B.( ,1)
C.( ,1)
D.(0,

【答案】D
【解析】解:若x<0,则﹣x>0∵x>0时,f(x)=sin( x)﹣1,
∴f(﹣x)=sin(﹣ x)﹣1
=﹣sin( x)﹣1,
则若f(x)=sin( x)﹣1,(x>0)关于y轴对称,
则f(﹣x)=﹣sin( x)﹣1=f(x),
即y=﹣sin( x)﹣1,x<0,
设g(x)=﹣sin( x)﹣1,x<0
作出函数g(x)的图象,
要使y=﹣sin( x)﹣1,x<0
与f(x)=loga(﹣x),x<0的图象至少有5个交点,
则0<a<1且满足g(﹣7)<f(﹣7),
即﹣2<loga7,
即loga7>logaa2
则7<
解得0<a<
故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合计

男大学生

610

女大学生

90

合计

800

(1)根据题意完成表格;

(2)是否有的把握认为愿意做志愿者工作与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某厂生产某种产品的过程中记录的几组数据,其中表示产量(单位:吨),表示生产中消耗的煤的数量(单位:吨).

(1)试在给出的坐标系下作出散点图,根据散点图判断,在中,哪一个方程更适合作为变量关于的回归方程模型?(给出判断即可,不需要说明理由)

(2)根据(1)的结果以及表中数据,建立变量关于的回归方程.并估计生产吨产品需要准备多少吨煤.参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+|x+2|.

(1)当a=1 时,求不等式f(x)≤5的解集;

(2)x0∈R,f(x0)≤|2a+1|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6个人排成一排照相,由于甲乙性格不合,所以要求甲乙不相邻,丙最高,要求丙站在最中间的两个位置中的一个位置上,则不同的站法有( )种.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的单调性;

(2)若,当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据:

(1) 身高大于175厘米的为高个身高小于等于175厘米的为非高个脚长大于42的为大脚脚长小于等于42的为非大脚,请根据上表数据完成下面的2×2列联表.

(2)根据(1)中的2×2列联表,在犯错误的概率不超过0.01的前提下,能否认为脚的大小与身高之间有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:关于x的不等式ax>1的解集是{x|x<0};q:函数 的定义域为R.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).

甲组:76,90,84,86,81,87,86,82,85,83 乙组:82,84,85,89,79,80,91,89,79,74

现从这20名学生中随机抽取一人,将抽出的学生为甲组学生记为事件A;“抽出学生的英语口语测试成绩不低于85记为事件B,则P(AB)、P(A|B)的值分别是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案