精英家教网 > 高中数学 > 题目详情
16.已知球O的体积为36π,则球的内接正方体的棱长是$2\sqrt{3}$.

分析 先确定球的半径,利用球的内接正方体的对角线为球的直径,即可求得结论.

解答 解:∵球的体积为36π
∴球的半径为3
∵球的内接正方体的对角线为球的直径
∴球的内接正方体的对角线长为6
设球的内接正方体的棱长为a,则$\sqrt{3}$a=6
∴a=2$\sqrt{3}$
故答案为:2$\sqrt{3}$.

点评 本题考查球的内接正方体,解题的关键是利用球的内接正方体的对角线为球的直径,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x(x∈R),
(1)解不等式f(x)-f(2x)>16-9×2x
(2)若函数q(x)=f(x)-f(2x)-m在[-1,1]上有零点,求m的取值范围;
(3)若函数f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2ag(x)+h(2x)≥0对任意x∈[1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知中心在坐标原点的椭圆E的长轴的一个端点是抛物线y2=4$\sqrt{5}$x的焦点,且椭圆E的离心率是$\frac{\sqrt{5}}{5}$
(1)求椭圆E的方程;
(2)过点C(-1,0)的动直线与椭圆E相交于A,B两点.若线段AB的中点的横坐标是-$\frac{1}{2}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,在区间[0,2]上是增函数的是(  )
A.y=x2-4x+5B.y=log${\;}_{\frac{1}{2}}$xC.y=2-xD.y=$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$cos({α+\frac{π}{6}})=\frac{1}{3}$,$α∈[{0,\frac{π}{2}}]$,那么cosα等于(  )
A.$\frac{2\sqrt{2}-\sqrt{3}}{6}$B.$\frac{2\sqrt{2}+\sqrt{3}}{6}$C.$\frac{2\sqrt{3}-\sqrt{2}}{6}$D.$\frac{2\sqrt{3}+\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四组函数中,表示同一函数的是(  )
A.f(x)=log22x,g(x)=$\root{3}{{x}^{3}}$B.f(x)=$\sqrt{{x}^{2}}$,g(x)=x
C.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$D.f(x)=lnx2,g(x)=2lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x,y满足约束条件$\left\{\begin{array}{l}{x+1≤0}\\{x-y≤0}\\{x+y≤0}\end{array}\right.$,则$\frac{y-1}{x}$的最大值为(  )
A.2B.$\frac{1}{2}$C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2x取极小值时,x的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某基建公司年初以100万元购进一辆挖掘机,以每年22万元的价格出租给工程队.基建公司负责挖掘机的维护,第一年维护费为2万元,随着机器磨损,以后每年的维护费比上一年多2万元,同时该机器第x(x∈N*,x≤16)年末可以以(80-5x)万元的价格出售.
(1)写出基建公司到第x年末所得总利润y(万元)关于x(年)的函数解析式,并求其最大值;
(2)为使经济效益最大化,即年平均利润最大,基建公司应在第几年末出售挖掘机?说明理由.

查看答案和解析>>

同步练习册答案