精英家教网 > 高中数学 > 题目详情

已知向量数学公式=(sinA,sinB),数学公式=(cosB,cosA),数学公式=sin2C,其中A、B、C为△ABC的内角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且数学公式,求AB的长.

解:(Ⅰ)(2分)
对于△ABC中A+B=π-C,0<C<π
∴sin(A+B)=sinC,
(4分)
又∵,∴(7分)
(Ⅱ)由 sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB,
由正弦定理得 2c=a+b(9分)
,∴
即 abcosC=18,ab=16(12分)
由余弦弦定理 c2=a2+b2-2abcosC=(a+b)2-3ab,
∴c2=4c2-3×36,,c=6(14分)
分析:(Ⅰ)根据数量积和两角和的正弦公式,二倍角公式可求C的值.
(Ⅱ)根据等差数列和数量积,列出三个边长的关系,借助余弦定理求得AB的值.
点评:本题考查平面向量的数量积的运算,正弦定理、余弦定理,两角和与差的三角函数,等差数列,是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA),
n
=(
3
,-1),
m
n
=1,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA),
n
=(
3
,-1),(
m
-
n
)⊥
m
,且A为锐角.
(Ⅰ) 求角A的大小;
(Ⅱ) 求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,sinB),
n
=(cosB,cosA),
m
n
=sin2C
,且A、B、C分别为△ABC的三边a、b、c所对的角.
(Ⅰ)求角C的大小;
(Ⅱ)求2sinA-sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA+1),
n
=(1,
3
)
m
n
,且A为锐角.
(Ⅰ)求角A的大小;
(Ⅱ)设f(x)=4cosAsin
x
4
cos
x
4
-2
3
sin2
x
4
+
3
,求f(x)的单调递增区间及函数图象的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且a2+b2=c2+ab.
(1)若
a
b
=
cosB
cosA
,且c=2,求△ABC的面积;
(2)已知向量
m
=(sinA,cosA),
n
=(cosB,-sinB),求|
m
-2
n
|的取值范围.

查看答案和解析>>

同步练习册答案