精英家教网 > 高中数学 > 题目详情
7.已知直线ax-by+8=0(a>0,b>0)经过x2+y2+4x-4y=0的圆心,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为1.

分析 由直线ax-by+8=0(a>0,b>0)经过x2+y2+4x-4y=0的圆心,可得a+b=4,则$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{4}$($\frac{1}{a}$+$\frac{1}{b}$)(a+b)=$\frac{1}{4}$(2+$\frac{b}{a}+\frac{a}{b}$),再用基本不等式求最小值.

解答 解:∵圆x2+y2+4x-4y=0的圆心坐标是(-2,2),
直线ax-by+8=0过圆心,∴a+b=4,
∴$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{4}$($\frac{1}{a}$+$\frac{1}{b}$)(a+b)=$\frac{1}{4}$(2+$\frac{b}{a}+\frac{a}{b}$)≥1,
当b=a=2时取等号.
故$\frac{1}{a}$+$\frac{1}{b}$的最小值为1,
故答案为1.

点评 本题考查了基本不等式的应用,考查了圆的一般式方程,解题的关键是得出a+b=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在正方体ABCD-A1B1C1D1中,点P在CDD1C1所在的平面上,满足∠PBD1=∠A1BD1,则动点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)=\sqrt{x+1}+\frac{1}{x-3}$的定义域为(  )
A.(-3,0]B.(-3,1]C.[-1,3)∪(3,+∞)D.[-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知命题p:方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}=1$表示焦点在y轴的椭圆;命题q:关于x的不等式x2-2x+m>0的解集是R;
若“p∧q”是假命题,“p∨q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=$\frac{2-i}{1+i}$(i为虚数单位),则复数z的共轭复数$\overline{z}$在复平面上所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若过(2,0)且与直线2x-y-1=0垂直的直线方程是(  )
A.2x-y+1=0B.2x-y-4=0C.x+2y-2=0D.x+2y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,离心率为$\frac{\sqrt{3}}{3}$,过F2的直线l交C于A,B两点,若△AF1B的周长为4$\sqrt{3}$,则C的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$,此时椭圆C的一条弦被(1,1)平分,那么这条弦所在的直线方程为2x+3y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A(1,-2,11),B(4,2,3),C(6,-1,4).则△ABC的面积是(  )
A.$\frac{{5\sqrt{42}}}{2}$B.$5\sqrt{42}$C.$5\sqrt{3}$D.$5\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x>0,y>0,x+y=1,则$xy+\frac{2}{xy}$的最小值是(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\frac{33}{2}$D.$\frac{33}{4}$

查看答案和解析>>

同步练习册答案