精英家教网 > 高中数学 > 题目详情

【题目】

已知点,动点P满足,记动点P的轨迹为W

)求W的方程;

)直线与曲线W交于不同的两点CD,若存在点,使得成立,求实数m的取值范围.

【答案】(Ⅰ) (Ⅱ)

【解析】

试题()依题意,点P到两定点AB的距离之和为定值,且此值大于两定点间的距离2,由椭圆定义可知动点P的轨迹是以AB为焦点,长轴长为的椭圆,从而写出W的标准方程;

)先将直线方程与曲线W的方程联立,得关于x的一元二次方程,利用韦达定理,写出交点CD的横坐标的和与积,再求出线段CD的中垂线的方程,此直线与x轴的交点即为M,从而得m关于k的函数,求函数值域即可

试题解析:()由椭圆的定义可知,动点P的轨迹是以AB为焦点,长轴长为的椭圆.

W的方程是

)设CD两点坐标分别为CD中点为

所以

从而

斜率

时,

时,

故所求的取范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系下,方程的图形为如图所示的“幸运四叶草”,又称为玫瑰线.

(1)当玫瑰线的时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;

(2)求曲线上的点M与玫瑰线上的点N距离的最小值及取得最小值时的点MN的极坐标(不必写详细解题过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为:为参数点的极坐标为,曲线C的极坐标方程为

试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点在直角坐标系下的坐标;

设直线l与曲线C相交于两点AB,点MAB的中点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆上任意一点到其两个焦点的距离之和等于,焦距为2c,圆是椭圆的左、右顶点,AB是圆O的任意一条直径,四边形面积的最大值为

(1)求椭圆C的方程;

(2)如图,若直线与圆O相切,且与椭圆相交于MN两点,直线平行且与椭圆相切于POP两点位于的同侧),求直线距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在梯形中,,四边形为矩形,且平面.

1)求证:平面

2)点在线段上运动,设平面与平面所成锐二面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示.

1)求的值;

2)求上的最大值和最小值;

3)不画图,说明函数的图象可由的图象经过怎样变化得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市旅游局为了进一步开发旅游资源,需要了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如下:若景点甲中的数据的中位数是126,景点乙中的数据的平均数是124.

1)求的值;

2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据(视样本频率为概率).今从这段时期内任取4天,记其中游客数不低于125人的天数为,求概率

3)现从上图的共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115且不高于135人的天数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。(不要求写过程)

(3) 从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率

查看答案和解析>>

同步练习册答案