精英家教网 > 高中数学 > 题目详情
11.定义n!=1×2×3×…×n,例如1!=1,2!=1×2=2,执行右边的程序框图,若输入?=0.01,则输出的e精确到e的近似值为(  )
A.2.69B.2.70C.2.71D.2.72

分析 模拟程序的运行,依次写出每次循环得到的e,n的值,当n=5时满足条件退出循环,输出e的值即可得解.

解答 解:模拟程序的运行,可得
?=0.01,e=1,n=1
执行循环体,e=2,n=2
不满足条件$\frac{1}{n!}$<?,执行循环体,e=2+0.5=2.5,n=3
不满足条件$\frac{1}{n!}$<?,执行循环体,e=2.5+$\frac{1}{6}$,n=4
不满足条件$\frac{1}{n!}$<?,执行循环体,e=2.5+$\frac{1}{6}$+$\frac{1}{24}$,n=5
由于$\frac{1}{5!}$≈0.008<?=0.01,满足条件$\frac{1}{n!}$<?,退出循环,输出e的值为2.5+$\frac{1}{6}$+$\frac{1}{24}$=2.71.
故选:C.

点评 本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在等差数列{an}中,若a2=2,a1+a5=16,则公差d等于(  )
A.4B.$\frac{14}{3}$C.6D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C1的参数方程是$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数),曲线C2的参数方程是$\left\{{\begin{array}{l}{x=-3+t}\\{y=\frac{3+3t}{8}}\end{array}}\right.$(t为参数).
(Ⅰ)将曲线C1,C2的参数方程化为普通方程;
(Ⅱ)求曲线C1上的点到曲线C2的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{OA}=({4,-3})$,将其绕原点O逆时针旋转120°后又伸长到原来的2倍得向量$\overrightarrow{OA'}$,则$\overrightarrow{OA'}$=(-4+3$\sqrt{3}$,3+4$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.
  为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:
年龄[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受访人数56159105
支持发展
共享单车人数
4512973
(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
年龄低于35岁年龄不低于35岁合计
支持   
不支持   
合计  
(2)若对年龄在[15,20)的被调查人中随机选取两人进行调查,求恰好这两人都支持发展共享单车的概率.
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=2,an+1=2an+2n+1
(Ⅰ)证明数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列;
(Ⅱ)求数列{$\frac{{a}_{n}}{n}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=$\frac{4n}{{a}_{n}{a}_{n+1}}$•sin$\frac{{a}_{n}π}{2}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,a1=-9,a2为整数,且对任意n∈N*都有Sn≥S5
(1)求{an}的通项公式;
(2)设${b_1}=\frac{4}{3}$,${b_{n+1}}=\left\{\begin{array}{l}{a_n},\;\;\;\;\;\;\;\;\;\;\;\;\;n为奇数\\-{b_n}+{(-2)^n},n为偶数\;\end{array}\right.$(n∈N*),求{bn}的前n项和Tn
(3)在(2)的条件下,若数列{cn}满足${c_n}={b_{2n}}+{b_{2n+1}}+λ{(-1)^n}{(\frac{1}{2})^{{a_n}+5}}\;(n∈{N^*})$.是否存在实数λ,使得数列{cn}是单调递增数列.若存在,求出λ的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案