精英家教网 > 高中数学 > 题目详情
对任意a∈[11],函数 f ( x ) = x2 + ( a4 )x + 42a的值总大于零,则x的取值范围是(  

A1 < x < 3      Bx < 1 x > 3      C1 < x < 2      Dx < 1 x > 2

 

答案:B
提示:

x2 + (4a)x + 42a 化为 (x2)a + x24x + 4

原题 x

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在正实数集R上的函数y=f(x)满足:①对任意a,b∈R都有f(a•b)=f(a)+f(b)②当x>1时,f(x)<0   ③f(3)=-1
(1)求f(1)的值
(2)证明函数y=f(x)在R上为单调减函数
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f(
p
q
)+
1
2
=0,p,q∈R+},问是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城二模)设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为
12
,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数数学公式(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为数学公式,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:2013年江苏省盐城市高考数学二模试卷(解析版) 题型:解答题

设函数(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:盐城二模 题型:解答题

设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为
1
2
,求a,b的值.

查看答案和解析>>

同步练习册答案