精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cosx+cos(x+
π
2
),x∈R,
(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调增区间;(Ⅲ)若f(a)=
3
4
,求sin2α的值.
分析:可先用诱导公式将函数化为f(x)=cosx-sinx,再将函数化为f(x)=
2
cos(x+
π
4
).根据余弦函数的性质,来求最小正周期和单调增区间.至于sin2α的值,可利用二倍角公式来求解.
解答:解:因为f(x)=cosx+cos(x+
π
2
)=cosx-sinx=
2
2
2
cosx-
2
2
sinx)=
2
cos(x+
π
4

    所以:
    (1)f(x)的最小正周期为T=
1
=2π;
    (2)由π+2kπ≤x+
π
4
≤2π+2kπ
,k∈Z得
      
4
+2kπ≤x≤
4
+2kπ
,k∈Z
      故f(x)的单调增区间为[
4
+2kπ
4
+2kπ
],k∈Z
     (3)∵f(a)=
3
4
,即cosα-sinα=
3
4

∴1-2sinαcosα=
9
16

∴sin2α=
7
16
点评:这类问题作为三角函数的基础问题,我们先用三角恒等变换变换将函数化为y=Asin(ωx+φ)(ω>0)或y=Acos(ωx+φ)(ω>0)的形式,然后根据正弦函数或余弦函数的性质来求解.三角恒等变换,一定要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案