精英家教网 > 高中数学 > 题目详情

【题目】已知,且f(x)=

(1)求函数f(x)的解析式;最小正周期及单调递增区间.

(2)当时,f(x)的最小值是-4,求此时函数f(x)的最大值,并求出相应的x的值.

【答案】(1);;(2); .

【解析】

(1)利用向量数量积的定义,求出函数的 解析式,结合函数的周期公式以及单调性进行求解.

(2)求出角2x的范围,结合函数的最小值求出,结合范围求出最大值即可.

1fx==sinxcosx+m+1)(-m+1=sin2x+1-m2

最小正周期为T=,由2kπ-≤2x≤2kπ+kZ

kπ-xkπ+kZ

即函数的单调递增区间为

2)当时,2x[-]

则当2x=时,函数fx)取得最小值,最小值为-4

×sin-+1-m2=-4

-×+1-m2=-4

m2=

fx=sin2x+1-m2=sin2x-

2x=,即x=时,函数fx)取得最大值,最大值为×sin-=-=

,此时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线E:=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.
(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线l分别交直线l1 , l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.

(1)求椭圆的标准方程;

(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆两点(点不同于椭圆的右顶点),证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:

年份

2011

2012

2013

2014

2015

2016

年宣传费(万元)

38

48

58

68

78

88

年销售量(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式,即.对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

(1)根据所给数据,求关于的回归方程;

(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好.该公司某年投入的宣传费用(单位:万元)分别为:,试根据回归方程估计年销售量,从这年中任选年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望.(其中为自然对数的底数,

附:对于一组数据,…,,其回归直线中的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(2,2),B(5,3),C(3,-1).

(1)求△ABC的外接圆的方程;

(2)若点M(a,2)在△ABC的外接圆上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.

(1)求证:C1M∥平面A1ADD1
(2)若CD1垂直于平面ABCD且CD1= ,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.

(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;

(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国某沙漠,曾被称为“死亡之海”,截止2018年年底该地区的绿化率只有,计划从2019年开始使用无人机飞播造林,弹射的种子可以直接打入沙面里头,实现快速播种,每年原来沙漠面积的将被改为绿洲,但同时原有绿洲面积的还会被沙漠化。设该地区的面积为,2018年年底绿洲面积为,经过一年绿洲面积为……经过年绿洲面积为

(1)求经过年绿洲面积

(2)截止到哪一年年底,才能使该地区绿洲面积超过?(取

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2+2 f(x)dx,则 f(x)dx=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

同步练习册答案