精英家教网 > 高中数学 > 题目详情
2.在一次实验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则x与y之间的回归直线方程为(  )
A.$\widehat{y}$=x+1B.$\widehat{y}$=x+2C.$\widehat{y}$=2x+1D.$\widehat{y}$=x-1

分析 求出所给的这组数据样本中心点,把样本中心点代入四个选项中验证,能够成立的只有一个,这一个就是所求的线性回归方程.

解答 解:计算$\overline{x}$=$\frac{1}{4}$×(1+2+3+4)=2.5,
$\overline{y}$=$\frac{1}{4}$×(2+3+4+5)=3.5,
∴这组数据的样本中心点是(2.5,3.5);
把样本中心点代入四个选项中,只有$\widehat{y}$=x+1成立.
故选:A.

点评 本题考查了线性回归方程过样本中心点的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线与函数y=lnx+ln2+1的图象相切,则双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.经过空间内的三个点有且只有一个平面
B.如果直线l上有一个点不在平面α内,那么直线上所有点都不在平面α内
C.四棱锥的四个侧面可能都是直角三角形
D.用一个平面截棱锥,得到的几何体一定是一个棱锥和一个棱台

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:“?x∈[0,1],a≥2x”,命题p:“?x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是(  )
A.[1,4]B.[2,4]C.[2,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.空间有10个点,其中有5个交点共面(除此之外再无4点共面),以每4个点为顶点作一个四面体,一共可作205个四面体(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出下列命题:
①y=1是幂函数;
②函数f(x)=2x-log2x的零点有且只有1个;
③$\sqrt{x-1}(x-2)≥0$的解集为[2,+∞);
④“x<1”是“x<2”的充分非必要条件;
⑤数列{an}的前n项和为Sn,且${S_n}={a^n}-1$(a∈R),则{an}为等差或等比数列;
其中真命题的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x+2,x∈(1,2],则f(x)的值域为(  )
A.(2,4]B.(3,4]C.(3,5]D.(2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,三边a,b,c成等比数列,且b=2,B=$\frac{π}{3}$,则S△ABC=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=Asin(ωx+φ)的图象如图所示,(其中A>0,ω>0,|φ|<$\frac{π}{2}$),则下列关于函数f(x)的说法中正确的是②③(写出所有正确的序号)

①函数f(x)的对称中心是(-$\frac{π}{6}$+2kπ,0)(k∈Z)
②函数f(x)的解析式是f(x)=sin(x+$\frac{π}{6}$)
③函数f(x)在[0,$\frac{π}{2}$]上的最小值为$\frac{1}{2}$;
④把函数f(x)图象上每一点的横坐标缩短为原来的$\frac{1}{3}$倍,纵坐标不变,所得函数的图象关于y轴对称.

查看答案和解析>>

同步练习册答案