精英家教网 > 高中数学 > 题目详情

【题目】微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的或点赞.现从小明的微信朋友圈内随机选取了40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下表:

步数

性别

02000

20015000

50018000

800110000

>10000

1

2

4

7

6

0

3

9

6

2

若某人一天的走路步数超过8000步被系统评定为“积极型”,否则被系统评定为“懈怠型”.

(1)利用样本估计总体的思想,试估计小明的所有微信好友中每日走路步数超过10000步的概率;

(2)根据题意完成下面的列联表,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?

积极型

懈怠型

总计

总计

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

【答案】(1)概率 (2)没有90%的把握认为“评定类型”与“性别”有关

【解析】试题分析:(1)利用样本估计总体的思想,可得所求概率;(2)根据题意求得列联表,再根据二联表的数据可得,从而可知没有90%的把握认为“评定类型”与“性别”有关.

试题解析:(1)根据表中数据可知,40位好友中走路步数超过10000步的有8人,

∴利用样本估计总体的思想,估计小明的所有微信好友中每日走路步数超过10000步

的概率.

(2)根据题意完成下面的列联表如下:

积极型

懈怠型

总计

13

7

20

8

12

20

总计

21

19

40

∴没有90%的把握认为“评定类型”与“性别”有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求曲线在点处的切线方程;

(2)若处取得极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为 的正方形,E为PC的中点,PB=PD.平面PBD⊥平面ABCD.
(1)证明:PA∥平面EDB.
(2)求三棱锥E﹣BCD与三棱锥P﹣ABD的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2003年至2015年北京市电影放映场次(单位:万次)的情况如图所示,下列函数模型中,最不适合近似描述这13年间电影放映场次逐年变化规律的是( )

A.f(x)=ax2+bx+c
B.f(x)=aex+b
C.f(x)=eax+b
D.f(x)=alnx+b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①三点确定一个平面;
②在空间中,过直线外一点只能作一条直线与该直线平行;
③若平面α上有不共线的三点到平面β的距离相等,则α∥β;
④若直线a、b、c满足a⊥b、a⊥c,则b∥c.
其中正确命题的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长春市的“名师云课”活动自开展以来获得广大家长和学子的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给广大学子,现对某一时段云课的点击量进行统计:

点击量

节数

6

18

12

(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.

(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间内,则需要花费40分钟进行剪辑,若点击量在区间内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中任意取出2节课进行剪辑,求剪辑时间为40分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如图所示:则中位数与众数分别为(

A.3与3
B.23与3
C.3与23
D.23与23

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

同步练习册答案