精英家教网 > 高中数学 > 题目详情
证明sin(α+β)sin(α-β)=sin2α-sin2β,并利用该式计算sin220°+sin80°•sin40°的值.
考点:三角函数恒等式的证明
专题:三角函数的求值
分析:根据两角和的正弦公式乘以两角差的正弦公式,再根据1=sin2α+cos2α,化简即可证明,sin80°•sin40°=sin(60°+20°)•sin(60°-20°),问题得以解决.
解答: 证明:∵sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ,
∴sin(α+β)sin(α-β)=sin2αcos2β-cos2αsin2β=sin2α(1-sin2β)-(1-sin2α)sin2β=sin2α-sin2αsin2β-sin2β+sin2αsin2β=sin2α-sin2β,
∴sin(α+β)sin(α-β)=sin2α-sin2β;
∴sin220°+sin80°•sin40°=sin220°+sin(60°+20°)•sin(60°-20°)=sin220°+sin260°-sin220°=sin260°=
3
4
点评:本题主要考查三角函数的和差公式以及平方关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求数列a,2a2,3a3,4a4,…,nan,…(a为常数,且a≠1,a≠0)的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内动点M(x,y)与两定点A(-
6
,0),B(
6
,0)的连线的斜率之积为-
1
3
,记动点M的轨迹为C.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)定点F(-2,0),T为直线x=-3上任意一点,过F作TF的垂线交曲线C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当
|TF|
|PQ|
最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(2x+φ)在(
π
4
π
3
)上单调递增,其中φ∈(π,2π),则φ的取值范围为(  )
A、[
7
6
π,2π)
B、(π,
11
6
π]
C、[
7
6
π,
11
6
π]
D、[
11
6
π,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
2
,cos2x),
b
=(sin2x,
1
2
)函数f(x)=
a
b
+
3
2

(1)求函数f(x)的最小正周期和单调增区间;
(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,已知M是棱AB的中点,求C1M与平面BCD1A1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-y2=1,点A是它的左顶点,c是它的半焦距,点B(c2,0),点P是双曲线右支上的点,且满足AP⊥BP,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg(|x|+1)-sin2x的零点个数为(  )
A、9B、10C、11D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F,G分别是棱C1D1,DD1的中点.设点E1是点E在平面DCC1D1内的正投影.
(1)证明:直线FG⊥平面FEE1
(3)求异面直线E1G与EA所成角的正弦值.

查看答案和解析>>

同步练习册答案