精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,点E,F为PA,PD的中点,则面BCFE将四棱锥P-ABCD所分成的上下两部分的体积的比值为$\frac{3}{5}$.

分析 不妨设ABCD是正方形,PD⊥平面ABCD,AD=2a,求出上下两部分的体积,即可得出结论.

解答 解:不妨设ABCD是正方形,PD⊥平面ABCD,AD=2a,则
VP-ABCD=$\frac{1}{3}×2a×2a×2a$=$\frac{8}{3}$a3
连接FA,FB,则VEFABCD=$\frac{1}{2}×\frac{8}{3}{a}^{3}$+$\frac{1}{3}×\frac{1}{2}×a×a×2a$=$\frac{5}{3}$a3
∴VP-EFBC=a3
∴四棱锥P-ABCD所分成的上下两部分的体积的比值为$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查体积的计算,考查学生的计算能力,正确计算体积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.根据下列条件,求x的值:
(1)4×4x-5×2x-6=0;
(2)9x+6x=22x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x>0,y>0,且2x+9y=1,则$\frac{1}{x}$+$\frac{x}{y}$的最小值为(  )
A.6B.8C.$\frac{17}{2}$D.11+6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在极
坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程为ρ=4$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)将圆C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与圆C相交于A,B两点,点P的坐标为(2,0),试求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若f(x)是R上周期为5的奇函数,且满足f(-2)=2,则f(2012)-f(2010)=(  )
A.2B.-2C.0D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合U=R,M={x||x|<2},N={y|y=2x-1},则M∩(∁UN)=(  )
A.[-1,2)B.(-2,2)C.(-2,+∞)D.(-2,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若tanα>0,则sin2α的符号是正号.(填“正号”、“负号”或“符号不确定”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示,则该几何体的体积是(  )
A.8+4πB.32+$\frac{11}{3}$πC.16+16πD.32+4π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.数列{an}满足a1=2,${a_{n+1}}=\frac{a_n}{{1+3{a_n}}}$,令${b_n}=\frac{1}{a_n}$
(Ⅰ)求证:{bn}为等差数列;         
(Ⅱ)求{an}的通项公式.

查看答案和解析>>

同步练习册答案