【题目】
给定椭圆,称圆心在原点,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.
(I)求椭圆C的方程和其“准圆”方程;
(II )点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其“准圆”于点M,N.
(1)当P为“准圆”与轴正半轴的交点时,求的方程;
(2)求证:|MN|为定值.
【答案】(I);(II )(1);(2)见解析
【解析】
(I)因为,所以
所以椭圆的方程为,
准圆的方程为.
(II)(1)因为准圆与轴正半轴的交点为P(0,2),
设过点P(0,2),且与椭圆有一个公共点的直线为,
所以,消去y,得到,
因为椭圆与只有一个公共点,
所以,
解得.
所以方程为.
(2)①当中有一条无斜率时,不妨设无斜率,
因为与椭圆只有一个公共点,则其方程为或,
当方程为时,此时与准圆交于点,
此时经过点(或)且与椭圆只有一个公共点的直线是
(或),即为(或),显然直线垂直;
同理可证方程为时,直线垂直.
②当都有斜率时,设点,其中,
设经过点与椭圆只有一个公共点的直线为,
则,消去得到,
即,
,
经过化简得到:,
因为,所以有,
设的斜率分别为,因为与椭圆都只有一个公共点,
所以满足上述方程,
所以,即垂直.
综合①②知:因为经过点,又分别交其准圆于点M,N,且垂直,
所以线段MN为准圆的直径,所以|MN|=4.
科目:高中数学 来源: 题型:
【题目】某沿海城市的海边有两条相互垂直的直线型公路、,海岸边界近似地看成一条曲线段.为开发旅游资源,需修建一条连接两条公路的直线型观光大道,且直线与曲线有且仅有一个公共点P(即直线与曲线相切),如图所示.若曲线段是函数图像的一段,点M到、的距离分别为8千米和1千米,点N到的距离为10千米,点P到的距离为2千米.以、分别为x,y轴建立如图所示的平面直角坐标系.
(1)求曲线段的函数关系式,并指出其定义域;
(2)求直线的方程,并求出公路的长度(结果精确到1米).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线E:的焦点重合,斜率为k的直线l交抛物线E于A、B两点,交椭圆于C、D两点.
(1)求椭圆的方程;
(2)直线l经过点,设点,且的面积为,求k的值;
(3)若直线l过点,设直线,的斜率分别为,,且,,成等差数列,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如下图所示,则关于这三家企业下列说法错误的是( )
A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业
C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,其左右顶点分别为,,上下顶点分别为,.圆是以线段为直径的圆.
(1)求圆的方程;
(2)若点,是椭圆上关于轴对称的两个不同的点,直线,分别交轴于点,求证:为定值;
(3)若点是椭圆Γ上不同于点的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李克强总理在很多重大场合都提出“大众创业,万众创新”.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.
(1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)
(2)如果银行贷款的年利率为,问该创客一年(12个月)能否还清银行贷款?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com