【题目】家具公司制作木质的书桌和椅子,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8000个工作时;漆工平均两小时漆一把椅子、一小时漆一张书桌,该公司每星期漆工最多有1300个工作时,又已知制作一把椅子和一张书桌的利润分别是15元和20元,试根据以上条件,问怎样安排生产能获得最大利润?
【答案】安排生产200把椅子,900张桌子时,利润最大为21000元.
【解析】
先设每天生产桌子x张,椅子y张,利润总额为P千元,根据题意抽象出x,y满足的条件,建立约束条件,作出可行域,再根据目标函数P═15x+20y,利用截距模型,平移直线找到最优解,即可.
解:设每天生产桌子x张,椅子y张,利润总额为p,目标函数为:p=15x+20y
则作出可行域:
把直线l:3x+4y=0向右上方平移至l'的位置时,直线经过可行域上的点B,此时p=15x+20y取最大值,
解方程得B的坐标为(200,900).
p=15×200+20×900=21000.
答:每天应生产桌子200张,椅子900张才能获得最大利润.
科目:高中数学 来源: 题型:
【题目】阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.①若定点为,写出的一个阿波罗尼斯圆的标准方程__________;②△中,,则当△面积的最大值为时,______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线()上的两个动点和,焦点为F.线段AB的中点为,且A,B两点到抛物线的焦点F的距离之和为8.
(1)求抛物线的标准方程;
(2)若线段AB的垂直平分线与x轴交于点C,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为等边三角形,,P,Q依次为AC,AB上的点,且线段PQ将分为面积相等的两部分,设,,.
(1)用解析式将t表示成x的函数;
(2)用解析式将y表示成x的函数;
(3)求y的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一副扑克牌有52张(不包括大小王),求:
(1)任取1张是红桃的概率;
(2)任取2张是同花色的概率;
(3)任取3张,至少有2张是同花色的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市现有人口总数为万人,如果年自然增长率为,试解答下列问题:
(1)写出该城市经过年后的人口总数关于的函数关系式;
(2)用程序流程图表示计算年以后该城市人口总数的算法;
(3)用程序流程图表示如下算法:计算大约多少年以后该城市人口将达到万人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,,且三门课程考试是否及格相互之间没有影响.
(1)分别求该应聘者用方案一和方案二时考试通过的概率;
(2)试比较该应聘者在上述两种方案下考试通过的概率的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,我们经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如某体育品牌的LOGO为,可抽象为如图所示的轴对称的优美曲线,下列函数中,其图象大致可“完美”局部表达这条曲线的函数是( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
(注意:在试题卷上作答无效)
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止;
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com