精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)= ,则函数f(x)与函数g(x)= 的图象在区间[﹣3,3]上的交点个数为(
A.5
B.6
C.7
D.8

【答案】B
【解析】解:由f(x)+f(2﹣x)=0,可得函数f(x)的图象关于点M(1,0)对称.

由f(x﹣2)=f(﹣x),可得函数f(x)的图象关于直线x=﹣1对称.

又在[﹣1,1]上表达式为f(x)= ,可得图象:

进而得到在区间[﹣3,3]上的图象.

画出函数g(x)= 在区间[﹣3,3]上的图象,

其交点个数为6个.

故选:B.

由f(x)+f(2﹣x)=0,可得函数f(x)的图象关于点M(1,0)对称.由f(x﹣2)=f(﹣x),可得函数

f(x)的图象关于直线x=﹣1对称.画出f(x)在[﹣1,1]上的图象:进而得到在区间[﹣3,3]上的图象.画出函数g(x)在区间[﹣3,3]上的图象,即可得出交点个数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 过点 ,离心率为 ,点F1 , F2分别为其左、右焦点.
(1)求椭圆E的标准方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且 ?若存在,求出该圆的方程,并求|PQ|的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).
(1)求证:BF∥面A1DE;
(2)求证:面A1DE⊥面DEBC;
(3)求二面角A1﹣DC﹣E的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+x﹣16.
(1)求曲线y=f(x)在点(2,﹣6)处的切线方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令 ,若函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,求实数r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,f(2)=0, <0(x>0),则不等式xf(x)<0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定义在[﹣2,2]的偶函数f(x)的图象如图所示,则方程f(f(x))=0的实根个数为(
A.3
B.4
C.5
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式组 表示的平面区域为D,则
(1)z=x2+y2的最小值为
(2)若函数y=|2x﹣1|+m的图象上存在区域D上的点,则实数m的取值范围是

查看答案和解析>>

同步练习册答案