精英家教网 > 高中数学 > 题目详情

【题目】某校名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,.

(1).求图中的值; 并根据频率分布直方图,估计这100名学生语文成绩的平均分;

(2).若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如上右表所示,求数学成绩在之外的人数.

【答案】(1)见解析;(2)10.

【解析】分析:(1)根据频率分布直方图中各小长方形面积和为1,列式求的值;根据组中值与对应区间概率乘积的和求平均数,(2)先根据比例关系以及频率分布直方图中概率求数学成绩在的总人数,最后用100减得结果.

详解:

1.依题意,得,

解得. 名学生语文成绩的平均分为

分.

2.数学成绩在的人数为,

数学成绩在的人数为,

数学成绩在的人数为,

数学成绩在的人数为,

所以数学成绩在之外的人数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系下,已知直线 ( )和圆 .圆 与直线 的交点为 .
(1)求圆 的直角坐标方程,并写出圆 的圆心与半径.
(2)求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体ABCD中,M,N分别是BC和DA的中点,则异面直线MN和CD所成角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线 的方程为 .
(1)若 在两坐标轴上的截距相等,求 的方程;
(2)若 与两坐标轴围成的三角形的面积为6,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,点 ,圆F2:x2+y2﹣2 x﹣13=0,以动点P为圆心的圆经过点F1 , 且圆P与圆F2内切.
(1)求动点的轨迹的方程;
(2)若直线l过点(1,0),且与曲线E交于A,B两点,则在x轴上是否存在一点D(t,0)(t≠0),使得x轴平分∠ADB?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体 中, 的中点, 上,且 ,点 是侧面 (包括边界)上一动点,且 平面 ,则 的取值范围是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,椭圆轴交于两点,且

(1)求椭圆的方程;

(2)设点是椭圆上的一个动点,且点轴的右侧,直线与直线交于两点,若以为直径的圆与轴交于,求点横坐标的取值范围及的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求符合下列条件的直线方程:

(1)过点,且与直线平行;

(2)过点,且与直线垂直;

(3)过点,且在两坐标轴上的截距相等.

查看答案和解析>>

同步练习册答案