精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知函数f(x)满足2ax·f(x)=2f(x)-1,f(1)=1,设无穷数列{an}满足an+1=f(an).(1)求函数f(x)的表达式;(2)若a1=3,从第几项起,数列{an}中的项满足anan+1;(3)若a1m为常数且mN+,m≠1),求最小自然数N,使得当nN时,总有0<an<1成立。

(1)


解析:

(1)当a=0时,有0=2f(x)-1,把f(1)=1代入2f(x)-1=1≠0,则a≠0,当a≠0时,f(x)=-,

f(1)=1,  ∴,        4 分

(2)若a1=3,由,,

假设当n≥3时,0<an<1,则0<an+1==12-an>0,从而an+1-an=>0  an+1an        从第2项起,数列{an}中的项满足anan+1                                 9分

另解:由

∴要满足anan+1,即,      <0>0nn,又∵nN*,∴n,∴从第2项起,数列{an}中的项满足anan+1                 9分

(3)当a1时,由a2,同理a3,假设an,由与归纳假设知<am,即am>2

<0,0<am+2==1   ∴N=m+2,使得当nN时,总有0<an<1            14分

另解:由(2)的方法2可得  

要使0<an<1,则0<<1-1<<1-1<<0

即当n-2时,总有0<an<1,又∵a1m-1<m

mn-2nm+2    ∴当Nm+2,使得当nN时总有0<an<1              14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分)已知向量 ,函数.   (Ⅰ)求的单调增区间;  (II)若在中,角所对的边分别是,且满足:,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)已知,且以下命题都为真命题:

命题 实系数一元二次方程的两根都是虚数;

命题 存在复数同时满足.

求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省高三第一次月考文科数学试卷(解析版) 题型:解答题

(本题满分14分)已知函数

(1)若,求x的值;

(2)若对于恒成立,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题

(本题满分14分)

已知椭圆的离心率为,过坐标原点且斜率为的直线相交于

⑴求的值;

⑵若动圆与椭圆和直线都没有公共点,试求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题

((本题满分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).

(1)当x=2时,求证:BD⊥EG ;

(2)若以F、B、C、D为顶点的三棱锥的体积记为

的最大值;

(3)当取得最大值时,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步练习册答案