精英家教网 > 高中数学 > 题目详情

【题目】若实数满足,则称为函数的不动点.

(1)求函数的不动点;

(2)设函数,其中为实数.

① 若时,存在一个实数,使得既是的不动点,又是 的不动点(是函数的导函数),求实数的取值范围;

② 令,若存在实数,使 成各项都为正数的等比数列,求证:函数存在不动点.

【答案】(1)函数的不动点为;(2)①,②见解析.

【解析】试题分析:

(1)结合函数的单调性可得函数的不动点为;

(2)由题意得到方程组,消去c可得实数的取值范围是

(3)满足题意时结合导函数与原函数的性质讨论计算即可证得结论.

试题解析:

(1)由题意可知,

.故

列表:

x

1

0

极大值

所以,方程有唯一解

所以函数的不动点为

(2)① 由题意可知

消去,得,所以

由题意知成各项都为正数的等比数列,

故可设公比为,则

故方程有三个根

又因为,所以为二次函数,

故方程为二次方程,最多有两个不等的根.则中至少有两个值相等.

时,方程有实数根,也即函数存在不动点,符合题意;

时,则,故,又因为各项均为正数,则,也即,同上,函数存在不动点,符合题意;

时,则,同上,函数存在不动点,符合题意;

综上所述,函数存在不动点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x﹣t(t为常数)有两个零点,g(x)=
(1)求g(x)的值域(用t表示);
(2)当t变化时,平行于x轴的一条直线与y=|f(x)|的图象恰有三个交点,该直线与y=g(x)的图象的交点横坐标的取值集合为M,求M.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的右焦点为F2(1,0),点P(1, )在椭圆C上.
(1)求椭圆C的方程;
(2)过坐标原点O的两条直线EF,MN分别与椭圆C交于E,F,M,N四点,且直线OE,OM的斜率之积为﹣ ,求证:四边形EMFN的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=log2(4x)log2(2x),且x满足4﹣17x+4x2≤0,求f(x)的最值,并求出取得最值时,对应f(x)的 值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:
①集合A={x∈Z|x=2k﹣1,k∈Z}与集合B={x∈z|x=2k+3,k∈Z}是相等集合;
②若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
③函数y= 的单调减区间是(﹣∞,0)∪(0,+∞);
④不存在实数m,使f(x)=x2+mx+1为奇函数;
⑤若f(x+y)=f(x)f(y),且f(1)=2,则 + +…+ =2016.
其中正确说法的序号是(
A.①②③
B.②③④
C.①③⑤
D.①④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从4名男生,3名女生中选出三名代表,
(1)不同的选法共有多少种?
(2)至少有一名女生的不同的选法共有多少种?
(3)代表中男、女生都有的不同的选法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证: (a≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列表示错误的是(
A.0??
B.??{1,2}
C.{(x,y)| ={3,4}
D.若A?B,则A∩B=A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

同步练习册答案