【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(﹣x)+f(x+3)=0;当x∈(0,3)时,f(x)= ,其中e是自然对数的底数,且e≈2.72,则方程6f(x)﹣x=0在[﹣9,9]上的解的个数为( )
A.4
B.5
C.6
D.7
科目:高中数学 来源: 题型:
【题目】近年来,武汉市出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.武汉市环保部门就是否赞成禁放烟花爆竹,对400位老年人和中青年市民进行了随机问卷调查,结果如下表:
赞成禁放 | 不赞成禁放 | 合计 | |
老年人 | 60 | 140 | 200 |
中青年人 | 80 | 120 | 200 |
合计 | 140 | 260 | 400 |
附:K2=
P(k2>k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
(1)有多大的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关?请说明理由;
(2)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解他们春节期间在烟花爆竹上消费的情况.假设一位老年人花费500元,一位中青年人花费1000元,用X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 + =1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为 .(14分)
(I)求椭圆的离心率;
(II)设点Q在线段AE上,|FQ|= c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.
(i)求直线FP的斜率;
(ii)求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. “若x>1,则2x>1”的否命题为真命题
B. “若cosβ=1,则sinβ=0”的逆命题是真命题
C. “若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题
D. 命题“若x>1,则x>a”的逆命题为真命题,则a>0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn满足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且以原点为圆心,椭圆的焦距为直径的圆与直线相切(为常数).
(1)求椭圆的标准方程;
(2)如图,若椭圆的左、右焦点分别为,过作直线与椭圆分别交于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两工人在同样的条件下生产,日产量相等,每天出废品的情况如下表:
则下列结论中正确的是 ( )
A. 甲生产的产品质量比乙生产的产品质量好一些
B. 乙生产的产品质量比甲生产的产品质量好一些
C. 两人生产的产品质量一样好
D. 无法判断谁生产的产品质量好一些
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(a∈R),给出两个命题:p:函数f(x)的值域不可能是(0,+∞);q:函数f(x)的单调递增区间可以是(-∞,-2].那么下列命题为真命题的是( )
A. p∧q B. p∨(q)
C. (p)∧q D. (p)∧(q)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com