精英家教网 > 高中数学 > 题目详情

【题目】设数列满足,其中AB是两个确定的实数,

1)若,求的前n项和;

2)证明:不是等比数列;

3)若,数列中除去开始的两项外,是否还有相等的两项,并证明你的结论.

【答案】12)证明见解析(3)没有,理由见解析

【解析】

1)由,数列的前n项和为一个等比数列和一个等差数列的前项和,根据等比、等差数列的前项和公式,即可求解;

(2)用反证法证明,求出,假设是等比数列,由得出关系,化简,不满足,所以假设不成立,即可证明结论;

3)由,得出,且,得,设,证明是递增数列,可得结论.

1,故前n项之和

2

是等比数列,则

,即

,故,且

此时,,不满足

因此不是等比数列.

3,即,且

此时,

当且仅当时等号成立,故

即除外,的各项依次递增.

因此中除去之外,没有其它的两项相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在六棱锥PABCDEF中,六边形ABCDEF为正六边形,平面PAB⊥平面ABCDEF,AB=1,PA,PB=2.

(1)求证:PA⊥平面ABCDEF;

(2)求直线PD与平面PAE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,∠BAD=120°AB=2EF分别为CDAA1的中点.

(Ⅰ)求证:DF∥平面B1AE

(Ⅱ)若直线AD1与平面B1AE所成角的正弦值为,求AA1的长;

(Ⅲ)在(Ⅱ)的条件下,求二面角B1-AE-D1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止课间操,若无雾霾则组织课间操.预报得知,在未来一周从周一到周五的课间操时间出现雾霾的概率是:前3天均为,后2天均为,且每一天出现雾霾与否是相互独立的.

(1)求未来5天至少一天停止课间操的概率;

(2)求未来5天组织课间操的天数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

)求a的取值范围;

)设x1x2的两个零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学随机抽取部分高一学生调查其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是,样本数据分组为

)求直方图中的值;

)从学校全体高一学生中任选名学生,这名学生中自主安排学习时间少于分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有5个命题:

①函数的最小正周期是

②终边在轴上的角的集合是

③在同一坐标系中,函数的图象和函数的图象有3个公共点;

④把函数的图象向右平移得到的图象;

⑤角为第一象限角的充要条件是

其中,真命题的编号是______(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且0,若过 A,Q,F2三点的圆恰好与直线相切,过定点 M(0,2)的直线与椭圆C交于G,H两点(点G在点M,H之间).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线的斜率,在x轴上是否存在点P(,0),使得以PG,PH为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,请说明理由;(Ⅲ)若实数满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某气象站统计了4月份甲、乙两地的天气温度(单位),统计数据的茎叶图如图所示,

1)根据所给茎叶图利用平均值和方差的知识分析甲,乙两地气温的稳定性;

2)气象主管部门要从甲、乙两地各随机抽取一天的天气温度,若甲、乙两地的温度之和大于或等于,则被称为甲、乙两地往来温度适宜天气,求甲、乙两地往来温度适宜天气的概率.

查看答案和解析>>

同步练习册答案