精英家教网 > 高中数学 > 题目详情
1.如图,四棱锥P-ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正三角形,且平面PDC⊥底面ABCD,E为PC的中点.
(1)求异面直线PA与DE所成的角的余弦值;
(2)求点D到面PAB的距离.

分析 (1)连结AC,BD交于点O,连结EO.由四边形ABCD为正方形,且AO=CO,PE=EC,可得PA∥EO,从而得到∠DEO为异面直线PA与DE所成的角,然后通过求解直角三角形求解;
(2)取DC的中点M,AB的中点N,连PM、MN、PN,由线面平行的判断得到DC∥面PAB,可得D到面PAB的距离等于点M到面PAB的距离,过M作MH⊥PN于H,由线面垂直的性质可得PM⊥DC,进一步得到PM⊥面ABCD,即PM⊥AB,然后推得MH⊥面PAB,则MH就是点D到面PAB的距离,然后求解直角三角形得答案.

解答 解(1)连结AC,BD交于点O,连结EO.
∵四边形ABCD为正方形,∴AO=CO,又∵PE=EC,∴PA∥EO,
∴∠DEO为异面直线PA与DE所成的角,
∵面PCD⊥面ABCD,AD⊥CD,∴AD⊥面PCD,∴AD⊥PD.
在Rt△PAD中,PD=AD=a,则PA=$\sqrt{2}a$,
∴$EO=\frac{1}{2}PA=\frac{\sqrt{2}}{2}a$,
又∵DE=$\frac{\sqrt{3}}{2},DO=\frac{\sqrt{2}}{2}a$,
∴$cos∠DEO=\frac{\frac{3}{4}{a}^{2}+\frac{1}{2}{a}^{2}-\frac{1}{2}{a}^{2}}{2×\frac{\sqrt{3}}{2}a×\frac{\sqrt{2}}{2}a}=\frac{\sqrt{6}}{4}$;
(2)取DC的中点M,AB的中点N,连PM、MN、PN.
∵DC∥AB,DC?面PAB,∴DC∥面PAB,
∴D到面PAB的距离等于点M到面PAB的距离.
过M作MH⊥PN于H,
∵面PDC⊥面ABCD,PM⊥DC,
∴PM⊥面ABCD,∴PM⊥AB,
又∵AB⊥MN,PM∩MN=M,
∴AB⊥面PMN.∴面PAB⊥面PMN,
∴MH⊥面PAB,
则MH就是点D到面PAB的距离.
在Rt△PMN中,MN=a,PM=$\frac{\sqrt{3}}{2}a$,
∴$PN=\sqrt{{a}^{2}+(\frac{\sqrt{3}}{2}a)^{2}}=\frac{\sqrt{7}}{2}a$,
∴$MH=\frac{MN•PM}{PN}=\frac{a•\frac{\sqrt{3}}{2}a}{\frac{\sqrt{7}}{2}a}=\frac{\sqrt{21}a}{7}$.

点评 本题考查空间异面直线所成角,考查了线面角,考查空间想象能力和计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知tanα=2,则$\frac{2sinα-cosα}{2sinα+cosα}$=(  )
A.1B.$\frac{3}{5}$C.$\frac{1}{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a,b为异面直线.对空间中任意一点P,存在过点P的直线(  )
A.与a,b都相交B.与a,b都垂直C.与a平行,与b垂直D.与a,b都平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲罐中5个红球,2个白球和3个黑球,乙罐中4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是(  )
A.P(B)=$\frac{2}{5}$
B.事件B与事件A1相互独立
C.P(B|A1)=$\frac{5}{11}$
D.P(B)的值不能确定,它与A1,A2,A3中哪一个发生都有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2sin(π+x)sin(x+$\frac{π}{3}$+φ)的图象关于原点对称,其中φ∈(0,π),则φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.椭圆3x2+2y2=6的焦距为(  )
A.1B.2C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知一条直线l和它上方的一个点F,点F到l的距离是2.一条曲线也在l的上方,它上面的每一点到F的距离的差都是2,建立适当的坐标系,求这条曲线的方程.(用两种方法)
方法一:以直线l所在直线为x轴,过F与l垂直的直线为y轴
方法二:以过F与l垂直的直线为y轴,过F与y轴垂直的直线为x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知关于x的二次方程x2+2mx+2m+1=0.
(1)当m=1时,判断方程根的情况.
(2)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线的方程为16x2-9y2=144.
(1)求该双曲线的实半轴长,虚半轴长,半焦距长,离心率;
(2)求该双曲线的焦点坐标,顶点坐标,渐进线方程.

查看答案和解析>>

同步练习册答案