已知命题p:“任意的x∈[1,2],x2-a≥0”;
命题q:“存在x0∈R,x02+2ax0+2-a=0”,若命题“p且q”是真命题.
求实数a的取值范围.
a≤-2或a=1.
解析试题分析:先由命题p,q为真,分别求得字母a的取值范围;注意命题p为真等价于不等式a≤x2在[1,2]上恒成立,而命题q为真等价于x2+2ax+2-a=0有实根即其判别式大于等于零;而命题“p且q”是真命题,必须且只需p,q都是真命题,故只需就得两个范围的交集即可.
试题解析:解:由“p且q”是真命题,则p为真命题,q也为真命题.
若p为真命题,a≤x2恒成立,∵x∈[1,2],∴a≤1.
若q为真命题,即x2+2ax+2-a=0有实根,
Δ=4a2-4(2-a)≥0,即a≥1或a≤-2.
综上可知实数a的取值范围为a≤-2或a=1.
考点:1.四种命题的真假关系;2.复合命题的真值表.
科目:高中数学 来源: 题型:解答题
分别写出下列命题的逆命题、逆否命题,并判断它们的真假:
(1)若q<1,则方程x2+2x+q=0有实根;
(2)若x2+y2=0,则x,y全为零.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
已知定义域为的函数满足:①对任意,恒有 成立;当时,。给出如下结论:
①对任意,有;②函数的值域为;③存在,使得;④“函数在区间上单调递减”的充要条件是 “存在,使得”。其中所有正确结论的序号是 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com