精英家教网 > 高中数学 > 题目详情
11.在三棱柱ABC-A1B1C1中,△ABC是边长为2正三角形,D、E分别是线段BB1、AC1的中点,DE⊥AC1
(1)求证:DE⊥平面AA1C1C;
(2)若AA1C1C是矩形,BB1=4,求直线BB1与平面ADC1所成角的正弦值.

分析 (Ⅰ)取棱A1C1的中点F,连接EF、B1F,证明四边形DEFB1是平行四边形,通过证明B1F⊥A1C1,DE⊥AC1,推出DE⊥平面AA1C1C.
(Ⅱ)建立空间直角坐标系,求出平面ADC1的一个法向量,直线的向量,设出直线BB1与平面ADC1成的角为θ,利用sinθ=|cosθ|,求解即可.

解答 解:(Ⅰ)取棱A1C1的中点F,连接EF、B1F…(1分)
则由EF是△AA1C1的中位线得EF∥AA1,EF=$\frac{1}{2}{AA}_{1}$,
又DB1∥AA1,DB1=$\frac{1}{2}{AA}_{1}$…(2分)
所以EF∥DB1,EF=DB1,故四边形DEFB1是平行四边形…(3分)
所以DE∥B1F…(4分)
因为B1F⊥A1C1,所以DE⊥A1C1,又DE⊥AC1…(5分)
所以DE⊥平面AA1C1C…(6分)
(Ⅱ)由(Ⅰ)知B1F⊥平面AA1C1C,所以B1F⊥C1C,又B1C1⊥C1C,
所以CC1⊥平面A1B1C1…(7分)
如图建立空间直角坐标系,A(0,0,$\sqrt{3}$),D(1,2,0),C1(-1,4,0)…(8分)
设平面ADC1的一个法向量为$\overrightarrow{n}$=(x,y,z)
则由$\left\{\begin{array}{l}\overrightarrow{n}•\overrightarrow{{DC}_{1}}=0\\ \overrightarrow{n}•\overrightarrow{AD}=0\end{array}\right.$,得$\left\{\begin{array}{l}x-y=0\\ x+2y-\sqrt{3}z=0\end{array}\right.$…(9分)
解得$\overrightarrow{n}$=(1,1,$\sqrt{3}$)…(10分)
设直线BB1与平面ADC1成的角为θ,
sinθ=|cosθ|=$\frac{|\overrightarrow{n}•\overrightarrow{{BB}_{1}}|}{\left|\overrightarrow{n}\right|\left|\overrightarrow{{BB}_{1}}\right|}$=$\frac{\sqrt{5}}{5}$…(12分)

点评 本题考查直线与平面所成角的求法,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知ABCD-A1B1C1D1是一个棱长为1的正方体,O1是底面A1B1C1D1的中心,M是棱BB1上的点,且S△DBM:S${\;}_{△{O}_{1}{B}_{1}M}$=2:3,则四面体O1ADM的体积为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在三棱锥A-BCD中,AB⊥平面BCD,BC⊥CD,点E在棱AC上,且BE⊥AC.
(1)试证明:BE⊥面ACD;
(2)若AB=BC=CD=2,过直线BE任作一个平面与直线AD相交于点P,得到三棱锥A-BCD的一个截面△BEP,求△BEP面积的最小值;
(3)若AB=BC=CD=2,求二面角B-AD-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.各种比赛在计算选手最后得分时,要去掉所有评委对该选手所打分数中的最高分和最低分,试设计一个找出最高分的算法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则当CQ∈(0,$\frac{1}{2}$]∪{1}时,S为四边形;当CQ=$\frac{1}{2}$时S为等腰梯形;当CQ=1时,S的面积为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程ρ=4cosθ,曲线C2的参数方程为$\left\{\begin{array}{l}x=m+tcosα\\ y=tsinα\end{array}\right.(t$为参数,0≤α<π)射线$θ=φ+\frac{π}{4},θ=φ-\frac{π}{4}$与曲线C1交于极点O为的三点A、B、C
(1)若|OB|+|OC|=λ|OA|,求λ的值;
(2)当$φ=\frac{π}{12}$时,B、C两点在曲线C2上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别是a,b,c,且A,B,C成等差数列,
(1)若a=1,b=$\sqrt{3}$,求sinC;
(2)若a,b,c成等差数列,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.i为虚数单位,复数$\frac{i}{i+1}$在复平面内对应的点到原点的距离为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-4x+2a+3,a∈R.
(1)若函数f(x)在[-1,1]上有零点,求a的取值范围;
(2)设函数g(x)=mx-2m,m∈R,当a=0时,?x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2),求m的取值范围.

查看答案和解析>>

同步练习册答案