精英家教网 > 高中数学 > 题目详情
8.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点到渐近线的距离为3,则双曲线C的虚轴长为(  )
A.3B.6C.$2\sqrt{5}$D.$2\sqrt{21}$

分析 求出双曲线的焦点坐标到直线的距离,得到方程,求出b即可.

解答 解:双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点($\sqrt{4+{b}^{2}}$,0),一条渐近线方程为:bx+2y=0,
双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点到渐近线的距离为3,
可得:$\frac{b\sqrt{4+{b}^{2}}}{\sqrt{4+{b}^{2}}}=3$,可得b=3,
则双曲线C的虚轴长为:6.
故选:B.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.抛物线y2=8x的焦点到直线$\sqrt{3}$x-y=0的距离是(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数(a2-4)+(a-2)i(i为虚数单位)是纯虚数,则实数a=(  )
A.0B.2C.-2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若X~N(-1,62),且P(-3≤X≤-1)=0.4,则P(X≥1)等于(  )
A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知条件p:(x-m)(x-m-3)>0;条件q:x2+3x-4<0.若p是q的必要不充分条件,则实数m的取值范围是(  )
A.(-∞,-7)∪(1,+∞)B.(-∞,-7]∪[1,+∞)C.(-7,1)D.[-7,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=lnx-x+1.
(Ⅰ)分析f(x)的单调性;
(Ⅱ)证明:当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\frac{cos10°+\sqrt{3}sin10°}{\sqrt{1-si{n}^{2}50°}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果△A1B1C1 的三个内角的余弦值分别等于△A2B2C2 的三个内角的正弦值,则(  )
A.△A1B1C1 和△A2B2C2 都是锐角三角形
B.△A1B1C1 和△A2B2C2 都是钝角三角形
C.△A1B1C1 是钝角三角形,△A2B2C2 是锐角三角形
D.△A1B1C1 是锐角三角形,△A2B2C2 是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=$\sqrt{{x^2}+1}$,则f′(2)=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$
C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{-2xsinx-(1-{x^2})}}{sinx}$

查看答案和解析>>

同步练习册答案