精英家教网 > 高中数学 > 题目详情

【题目】已知函数设关于的方程个不同的实数解,则的所有可能的值为(

A. 3 B. 13 C. 46 D. 346

【答案】B

【解析】由已知, ,令,解得,则函数上单调递增,在上单调递减,极大值,最小值.

综上可考查方程的根的情况如下(附函数图):

(1)当时,有唯一实根;

(2)当时,有三个实根;

(3)当时,有两个实根;

(4)当时,无实根.

,则由,得

时,由

符号情况(1),此时原方程有1个根,

,而,符号情况(3),此时原方程有2个根,综上得共有3个根;

时,由,又

符号情况(1)或(2),此时原方程有1个或三个根,

,又,符号情况(3),此时原方程有两个根,

综上得共1个或3个根.

综上所述, 的值为1或3.故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于y=3sin(2x﹣ )有以下命题:
①f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z);
②函数的解析式可化为y=3cos(2x﹣ );
③图象关于x=﹣ 对称;④图象关于点(﹣ ,0)对称.
其中正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若在区间上有且只有一个极值点,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以为顶点的六面体中, 均为等边三角形,且平面平面 平面 .

(1)求证: 平面

(2)求此六面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)分别求函数在区间上的极值

(2)求证:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用分层抽样的方法从某校学生中抽取一个容量为60的样本,其中高二年级抽取20人,高三年级抽取25人,已知该校高一年级共有800人,则该校学生总数为人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣2sin(2x+φ)(|φ|<π),若 ,则f(x)的一个单调递增区间可以是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取20名学生的成绩进行分析,分数用茎叶图记录如图所示(部分数据丢失),得到的频率分布表如下:

分数段(分)

[50,70]

[70,90]

[90,110]

[110,130]

[130,150]

合计

频数

b

频率

a

0.25


(1)表中a,b的值及分数在[90,100)范围内的学生,并估计这次考试全校学生数学成绩及格率(分数在[90,150]范围为及格);
(2)从大于等于110分的学生随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.

查看答案和解析>>

同步练习册答案