精英家教网 > 高中数学 > 题目详情
4.如图,已知点P在圆柱OO1的底面圆O上,AB为圆O的直径,圆柱的侧面积为16π
,OA=2,∠AOP=120°.试求三棱锥A1-APB的体积.

分析 利用侧面积公式计算AA1,计算出AP,BP代入棱锥的体积公式即可得出三棱锥A1-APB的体积.

解答 解:S圆柱侧=2π•OA•AA1=4π•AA1=16π,
∴AA1=4,
∵∠AOP=120°,OA=OP=2,
∴AP=2$\sqrt{3}$,BP=$\frac{1}{2}AB$=OA=2.
∴V${\;}_{{A}_{1}-APB}$=$\frac{1}{3}{S}_{△APB}•A{A}_{1}$=$\frac{1}{3}×\frac{1}{2}×2\sqrt{3}×2×4$=$\frac{8\sqrt{3}}{3}$.

点评 本题考查了圆锥的体积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=AA1=4,AB=5,D是线段AB上一点.
(1)设$\overrightarrow{AB}$=5$\overrightarrow{AD}$,求异面直线AC1与CD所成角的余弦值;
(2)若AC1∥平面B1CD,求二面角D-CB1-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过80km/h,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的$\frac{1}{4}$倍,固定成本为a元;
(Ⅰ)将全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;
(Ⅱ)若a=400,为了使全程运输成本最小,货车应以多大的速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=2tan(3x-$\frac{π}{4}$),试求函数的定义域、值域、最小正周期、单调区间并判断函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)一个袋子中装有四个形状大小完全相同的小球,球的编号分别为1,2,3,4,先从袋子中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.
(2)设m,n是区间[0,1]上随机取得的两个数,求方程x2-$\sqrt{2n}$x+m=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为$\frac{65}{81}$,则事件A恰好发生一次的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{32}{81}$D.$\frac{8}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若等差数列{an}的前15项和为5π,则cos(a4+a12)=(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正项等比数列{an}满足:a4+a3=a2+a1+8,则a6+a5的最小值是(  )
A.64B.32C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知平面直角坐标系中,点O为原点.A(-3,-4),B(5,-10).
(1)求$\overrightarrow{AB}$的坐标及|$\overrightarrow{AB}$|;
(2)若$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,$\overrightarrow{OD}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$,求$\overrightarrow{OC}$•$\overrightarrow{OD}$.

查看答案和解析>>

同步练习册答案