精英家教网 > 高中数学 > 题目详情
已知集合{(x,y)|
2x+y-4≤0
x+y≥0
x-y≥0
}
表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为(  )
A、
16
B、
π
16
C、
π
32
D、
32
考点:几何概型,简单线性规划
专题:概率与统计
分析:作出不等式组对应的平面区域,求出对应的面积,结合几何概型的概率公式进行求解即可.
解答: 解:作出不等式组对应的平面区域如图,
则对应的区域为△AOB,
2x+y-4=0
x+y=0
,解得
x=4
y=-4
,即B(4,-4),
2x+y-4=0
x-y=0
,解得
x=
4
3
y=
4
3
,即A(
4
3
4
3
),
直线2x+y-4=0与x轴的交点坐标为(2,0),
则△OAB的面积S=
1
2
×2×
4
3
+
1
2
×2×4
=
16
3

点P的坐标满足不等式x2+y2≤2区域面积S=
1
4
×π×(
2
)2=
π
2

则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为
π
2
16
3
=
32

故选:D
点评:本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知线段PQ过△OAB的重心G,且P、Q分别在OA、OB上,设
OA
=
a
OB
=
b
OP
=m
a
OQ
=n
b
,求证:
1
m
+
1
n
=3

查看答案和解析>>

科目:高中数学 来源: 题型:

tan(-150°)cos(-420°)
sin600°
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥O-ABC的顶点O(0,0,0),A,B,C三点分别在x轴、y轴、z轴上,且|OA|=2|OB|=3|OC|=6,求AC边长的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中有两条中线所在直线方程分别为3x-2y+2=0,3x+5y-12=0.则当顶点A为(-4,2)时,求BC边所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足:|
a
|=1,|
b
|=2,|
a
-
b
|=2则|
a
+
b
|=(  )
A、
6
B、
5
C、
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在(0,+∞)上的单调函数,已知对于任意正数x,都有f[f(x)+
1
x
]=
1
f(x)
,求f(1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠A=90°,D是AC上一点,E是BC上一点,若AB=
1
2
BD,CE=
1
2
EB,∠BDE=120°,CD=3,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:
m
=(2cosωx,sinωx),
n
=(sin(ωx+
π
2
),2
3
cosωx),且f(x)=
m
n
+t-1,若f(x)的图象上两个最高点的距离为3π,且当0<x<π时,函数f(x)的最小值为0.求表达式.

查看答案和解析>>

同步练习册答案