精英家教网 > 高中数学 > 题目详情
3.如图,在长方形ABCD中,AB=2,AD=1,E为DC的中点,将△DAE沿AE折起,平面DAE⊥平面ABCE,连DB,DC,BE.

(Ⅰ)求证:BE⊥平面ADE;
(Ⅱ)求AC与平面ADE所成角的正弦值.

分析 (Ⅰ)在矩形ABCD中,求出AE=BE=$\sqrt{2}$,AB=2,说明AE⊥BE,然后证明BE⊥平面ADE.
(II)由题意BE=$\sqrt{2}$,AC=$\sqrt{5}$,C到平面ADE的距离为$\frac{\sqrt{2}}{2}$,然后求出所成角的正弦值.

解答 (Ⅰ)证明:∵矩形ABCD中,AB=2,AD=1,E为CD的中点.
∴AE=BE=$\sqrt{2}$,AB=2,
∴AE⊥BE,
又∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,
∴BE⊥平面ADE.…(6分)
(II)解:由题意BE=$\sqrt{2}$,AC=$\sqrt{5}$,C到平面ADE的距离为$\frac{\sqrt{2}}{2}$
AC与平面ADE所成角的正弦值为$\frac{\frac{\sqrt{2}}{2}}{\sqrt{5}}$=$\frac{\sqrt{10}}{10}$…(6分)

点评 本题考查直线与平面垂直,折叠问题,直线与平面所成角的求法,考查空间想象能力,计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\frac{1}{2}$x2-alnx(a∈R),g(x)=x2-(a+1)x.
(1)求函数f(x)的单调区间;
(2)当a≥0时,讨论函数f(x)与g(x)的图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设实数a∈(0,10)且a≠1,则函数f(x)=logax在(0,+∞)内为增函数且$g(x)=\frac{a-3}{x}$在(0,+∞)内也为增函数的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校高三共有男生600名,从所有高三男生中随机抽取40名测量身高(单位:cm)作为样本,得到频率分布表与频率分布直方图(部分)如表:
 分组频数 频率 
[150,160) 2 
[160,170) n1 f1
[170,180) 14 
[180,190) n2 f2
[190,200] 6 
(Ⅰ)求n1、n2、f1、f2
(Ⅱ)试估计身高不低于180cm的该校高三男生人数,并说明理由;
(Ⅲ)从抽取的身高不低于185cm的男生中任取2名参加选拔性测试,已知至少有一个身高不低于190cm的学生的概率为$\frac{9}{11}$,求抽取身高不低于185cm的男生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xex与函数g(x)=$\frac{1}{2}$x2+ax的图象在点(0,0)处有相同的切线.
(Ⅰ)求a的值;
(Ⅱ)设h(x)=f(x)-bg(x)(b∈R),求函数h(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=$\frac{1}{3}$x3+3x2+ax,若g(x)=$\frac{1}{{4}^{x}}$,对任意x1∈[$\frac{1}{2}$,1],存在x2∈[$\frac{1}{2}$,2],使得f′(x1)≤g(x2)成立,则实数a的取值范围为(  )
A.[-$\frac{11}{4}$,+∞)B.(-∞,-$\frac{13}{2}$]C.(-∞,-$\frac{11}{4}$]D.[-$\frac{13}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x,y满足约束条件$\left\{{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}}\right.$,则目标函数z=2x+y的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆C:x2-2x+y2=0,则圆心坐标为(1,0);若直线l过点(-1,0)且与圆C相切,则直线l的方程为y=±$\frac{\sqrt{3}}{3}$(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知不等式(mx+5)(x2-n)≤0对任意x∈(0,+∞)恒成立,其中m,n是整数,则m+n的取值的集合为{-4,24}.

查看答案和解析>>

同步练习册答案