精英家教网 > 高中数学 > 题目详情

【题目】已知全集U=R,函数y= + 的定义域为A,函数y= 的定义域为B.
(1)求集合A、B.
(2)(UA)∪(UB).

【答案】
(1)解:由 x≥2

A={x|x≥2}

x≥﹣2且x≠3

B={x|x≥﹣2且x≠3}


(2)解:A∩B={x|x≥2且x≠3}

∴(CUA)∪(CUB)=CU(A∩B)={x|x<2或x=3}


【解析】(1)根据负数没有平方根及分母不为零列出不等式组,求出不等式组的解集确定出集合A,B.(2)先利用(CUA)(CUB)=CU(A∩B),再结合所求出的集合利用交集的定义即可得到(CUA)∪(CUB).
【考点精析】本题主要考查了交、并、补集的混合运算和函数的定义域及其求法的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法;求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期为2 π,最小值为﹣2,且当x= 时,函数取得最大值4. (I)求函数 f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)若当x∈[ ]时,方程f(x)=m+1有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“a≥3 ”是“直线l:2ax﹣y+2a2=0(a>0)与双曲线C: =1的右支无交点”的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+an=4n﹣3(n∈N*
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,点D在AB上.
(1)若D是AB中点,求证:AC1∥平面B1CD;
(2)当 = 时,求二面角B﹣CD﹣B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}: + + + + + + ,…,那么数列{bn}={ }的前n项和为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 ,其左右焦点为 ,过点的直线交椭圆 两点,线段的中点为 的中垂线与轴和轴分别交于 两点,且构成等差数列.

(1)求椭圆的方程;

(2)记的面积为 为原点)的面积为.试问:是否存在直线,使得?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一条对称轴为,且最高点的纵坐标是

(1)求的最小值及此时函数的最小正周期、初相;

(2)在(1)的情况下,设,求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,则满足f[f(a)+ ]= 的实数a的个数为(
A.2
B.4
C.6
D.8

查看答案和解析>>

同步练习册答案