【题目】对于定义在区间的函数,定义:(),(),其中,表示函数在上的最小值,表示函数在上的最大值.
(1)若,,试写出、的表达式;
(2)设且,函数,,如果与恰好为同一函数,求的取值范围.
(3)若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”,已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的,如果不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(4,0)、B(1,0),动点M满足|AM|=2|BM|.
(1)求动点M的轨迹C的方程;
(2)直线l:x+y=4,点N∈l,过N作轨迹C的切线,切点为T,求NT取最小时的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个无穷数列分别满足,,
其中,设数列的前项和分别为,
(1)若数列都为递增数列,求数列的通项公式;
(2)若数列满足:存在唯一的正整数(),使得,称数列为“坠点数列”
①若数列为“5坠点数列”,求;
②若数列为“坠点数列”,数列为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 ,为个不同的幂函数,有下列命题:
① 函数 必过定点;
② 函数可能过点;
③ 若 ,则函数为偶函数;
④ 对于任意的一组数、、…、,一定存在各不相同的个数、、…、使得在上为增函数.其中真命题的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,(其中为自然对数的底数,…).
(1)当时,求函数的极值;
(2)若函数在区间上单调递增,求的取值范围;
(3)若,当时,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是边长为1的正三角形,点P在所在的平面内,且(a为常数),下列结论中正确的是( )
A.当时,满足条件的点P有且只有一个
B.当时,满足条件的点P有三个
C.当时,满足条件的点P有无数个
D.当a为任意正实数时,满足条件的点总是有限个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com