精英家教网 > 高中数学 > 题目详情

【题目】对于定义在区间的函数,定义:),),其中,表示函数上的最小值,表示函数上的最大值.

(1)若,试写出的表达式;

(2)设,函数,如果恰好为同一函数,求的取值范围.

(3)若存在最小正整数,使得对任意的成立,则称函数上的“阶收缩函数”,已知函数,试判断是否为上的“阶收缩函数”,如果是,求出对应的,如果不是,请说明理由.

【答案】(1);(2);(3)是,,理由见解析.

【解析】

1)根据的最大值为,可得的表达式。

2)若恰好为同一函数,只须上是单调递减,讨论的取值由复合函数的单调性即可求解。

3)根据函数上的值域,写出的解析式,再由求出的范围得到答案。

1)由题意可得:

2)若 恰好为同一函数,只须上是单调递减,

时,令,则

,则,对称轴,根据复合函数的单调性显然在为单调递减,故成立。

时,令,由,则,只需

化简得,解得

综上所述的取值范围为

3

时,

时,

时,

综上所述:

上的“阶收缩函数”, 且小正整数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A40)、B10),动点M满足|AM|=2|BM|

1)求动点M的轨迹C的方程;

2)直线lx+y=4,点Nl,过N作轨迹C的切线,切点为T,求NT取最小时的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1) 证明:PB∥平面AEC

(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个无穷数列分别满足

其中,设数列的前项和分别为

1)若数列都为递增数列,求数列的通项公式;

2)若数列满足:存在唯一的正整数),使得,称数列坠点数列

若数列“5坠点数列,求

若数列坠点数列,数列坠点数列,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 个不同的幂函数,有下列命题:

函数 必过定点

② 函数可能过点

③ 若 ,则函数为偶函数;

④ 对于任意的一组数、…、,一定存在各不相同的个数、…、使得上为增函数.其中真命题的个数为( )

A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数,…).

(1)时,求函数的极值;

(2)若函数在区间上单调递增,求的取值范围;

(3)若,当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为1的正三角形,点P所在的平面内,且a为常数),下列结论中正确的是( )

A.时,满足条件的点P有且只有一个

B.时,满足条件的点P有三个

C.时,满足条件的点P有无数个

D.a为任意正实数时,满足条件的点总是有限个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数的导函数,,当时,,则使得成立的的取值范围是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案