【题目】设函数f(x)=4x3+ ,x∈[0,1],证明:
(Ⅰ)f(x)≥1﹣2x+3x2;
(Ⅱ) <f(x)≤ .
【答案】证明:(I)令g(x)=(1+x)2(1﹣2x+3x2﹣4x3),x∈[0,1],
则g′(x)=﹣20(1+x)x3≤0,当且仅当x=0时取等号,
∴g(x)在[0,1]上单调递减,故g(x)≤g(0)=1,
∴(1+x)2(1﹣2x+3x2﹣4x3)≤1,
∴ ≥1﹣2x+3x2,
即f(x)≥1﹣2x+3x2.
(II)由(I)知f(x)≥1﹣2x+3x2=3(x﹣ )2≥ ,
∵两处等号不能同时成立,
∴f(x)> .
f′(x)=12x2﹣ = ,
令h(x)=6x2(1+x)3﹣1,则f(x)在[0,1]上单调递增,
∵h(0)=﹣1,h(1)=47>0,
∴h(x)在(0,1)上存在唯一一个零点x0,
∴当0<x<x0时,f′(x)<0,当x0<x<1时,f′(x)>0,
∴f(x)在[0,1]上先减后增,
又f(0)=1,f(1)= ,
∴f(x)≤f(1)= .
综上, f(x)≤
【解析】(I)构造函数g(x)=(1+x)2(1﹣2x+3x2﹣4x3),判断g(x)的单调性得出最大值,化简即可得出结论;(II)判断f(x)的单调性即可f(x)的最大值,利用(I)得出f(x)> .
【考点精析】本题主要考查了不等式的证明的相关知识点,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图.设椭圆C: (a>b>0)的离心率e= ,椭圆C上一点M到左、右两个焦点F1、F2的距离之和是4.
(1)求椭圆C的方程;
(2)直线l:x=1与椭圆C交于P、Q两点,P点位于第一象限,A、B是椭圆上位于直线l两侧的动点,若直线AB的斜率为 ,求四边形APBQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=g(x)﹣(a﹣1)lnx,g(x)=ax+ +1﹣3a+(a﹣1)lnx.
(1)当a=1时,求函数y=f(x)在点(2,f(2))处的切线方程;
(2)若不等式g(x)≥0在x∈[1,+∞)时恒成立,求正实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,不等式 + ≥ 成立;在四边形ABCD中,不等式 + + + ≥ 成立成立;在五边形ABCDE中,不等式 + + + + ≥ 成立…,依此类推,在n边形A1A2…An中,不等式不等式 ≥成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex;
(3)证明:对任意给定的正数c,总存在x0 , 使得当x∈(x0 , +∞)时,恒有x<cex .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设公差不为0的等差数列{an}的前n项和为Sn , 若a2 , a5 , a11成等比数列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),则m+n的值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com