精英家教网 > 高中数学 > 题目详情
9.若函数f(x)在R上可导,f(x)=x3+x2f′(1),则$\int_{-1}^1$ f(x)dx=-2.

分析 先根据导数的运算法则求导,再求出f′(1)=-3,再根据定积分的计算法计算即可.

解答 -2解:∵f(x)=x3+x2f′(1),
∴f′(x)=3x2+2xf′(1),
∴f′(1)=3+2f′(1),
∴f′(1)=-3,
∴f(x)=x3-3x2
∴$\int_{-1}^1{f(x)dx=}$($\frac{1}{4}{x}^{4}-{x}^{3}$)|${\;}_{-1}^{1}$=$\frac{1}{4}$-1-($\frac{1}{4}$+1)=-2,
故答案为:-2.

点评 本题主要考查了导数的运算法则和定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin2x-2$\sqrt{2}$asin(x+$\frac{π}{4}$)+2,设t=sinx+cosx,且x∈(-$\frac{π}{4}$,$\frac{3π}{4}$)
(1)试将函数f(x)表示成关于t的函数g(t),并写出t的范围;
(2)若g(t)≥0恒成立,求实数a的取值范围;
(3)若方程f(x)=0有四个不同的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.根据如图所示的三视图,画出几何体.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.由空间一点O出发的四条射线两两所成的角相等,则这个角的余弦值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间[0,2]上随机地取一个数x,则事件“-1≤log${\;}_{\frac{1}{2}}$x≤1”发生的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售单价每涨x(x∈N*)元,销售量就减少x个,求利润y的最大值及此时此商品的售价.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(1,1)和点B(3,4),P是y轴上的一点,则|PA|+|PB|的最小值是(  )
A.$\sqrt{13}$B.5C.$\sqrt{29}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,c∈(0,+∞),若$\frac{c}{a+b}$<$\frac{a}{b+c}$<$\frac{b}{c+a}$,则(  )
A.c<a<bB.b<c<aC.a<b<cD.a+b+c>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若a1=1,对任意的n∈N*,都有an>0,且nan+12=(2n-1)an+1an+2an2.设M(x)表示整数x的个位数字,则M(a2011)=4.

查看答案和解析>>

同步练习册答案