精英家教网 > 高中数学 > 题目详情
15.方程$lnx-\frac{1}{x}=0$的实数根的所在区间为(  )
A.(3,4)B.(2,3)C.(1,2)D.(0,1)

分析 令f(x)=lnx-$\frac{1}{x}$,从而利用函数的零点的判定定理判断即可.

解答 解:令f(x)=lnx-$\frac{1}{x}$,
易知f(x)在其定义域上连续,
f(2)=ln2-$\frac{1}{2}$=ln2-ln$\sqrt{e}$>0,
f(1)=ln1-1=-1<0,
故f(x)=lnx-$\frac{1}{x}$,在(1,2)上有零点,
故方程方程$lnx-\frac{1}{x}=0$的根所在的区间是(1,2);
故选:C.

点评 本题考查了方程的根与函数的零点的关系应用.考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.“x2+2x-8>0”是“x>2”成立的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表
气温(°C)2016124
用电量(度)14284462
由表中数据得回归直线方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中$\stackrel{∧}{b}$=-3,预测当气温为2℃时,用电量的度数是(  )
A.70B.68C.64D.62

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点A(-$\sqrt{2}$,0),B($\sqrt{2}$,0),P是平面内的一个动点,直线PA与PB交于点P,且它们的斜率之积是-$\frac{1}{2}$.
(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U={0,1,2,3,4},集合A={1,2},B={0,2,4},则(∁UA)∩B等于(  )
A.{0,4}B.{0,3,4}C.{0,2,3,4}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设点A(-5,2),B(1,4),点M为线段AB的中点.则过点M,且与直线3x+y-2=0平行的直线方程为3x+y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2bx+c,且f(1)=f(3)=-1.设a>0,将函数f(x)的图象先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图象.
(Ⅰ)若函数g(x)有两个零点x1,x2,且x1<4<x2,求实数a的取值范围;
(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有$\frac{μ-λ}{n-m}>8$,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“x-1>0”是“x2-1>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个几何体的三视图如图所示,其体积为$\frac{11}{6}$.

查看答案和解析>>

同步练习册答案