精英家教网 > 高中数学 > 题目详情
3.计算:
(1)2x-4<0;
(2)求2$\sqrt{2}$•3$\sqrt{{2}^{2}}$的值;
(3)lg2+lg5.

分析 (1)利用表达式的解法,求解即可.
(2)利用原来砸门的运算法则化简求解即可.
(3)利用对数运算法则化简求解即可.

解答 解:(1)2x-4<0;可得x<2.
(2)2$\sqrt{2}$•3$\sqrt{{2}^{2}}$=${2}^{1+\frac{1}{2}+\frac{2}{3}}$=${2}^{\frac{13}{6}}$;
(3)lg2+lg5=lg10=1.

点评 本题考查表达式的解法,有理指数幂的运算法则以及对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=lg(ax2-4a+1),0<a<$\frac{1}{4}$,则关于x的不等式(x-1)f(x)<0的解集为(  )
A.(-∞,-2)∪(1,2)B.(-2,-1)∪(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在一张纸上画一个圆,圆心为O,半径为R,并在圆O外设置一个定点F,折叠纸片使圆周上某一点M与F重合,抹平纸片得一折痕AB,连结MO并延长交AB于点P,当点M在圆O上运动时,直线AB与P点轨迹的公共点的个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F,A分别为双曲线 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,右顶点,过F作x轴的垂线,在第一象限与双曲线交于点P,AP的延长线与双曲线的渐近线在第一象限交与点Q,若向量$\overrightarrow{AP}$=(2-$\sqrt{2}$)向量$\overrightarrow{AQ}$,则双曲线的离心率是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.集合A={1,2,0},B={0,3),求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)满足f(0)=1,单调减区间是(-∞,1],最小值为-1,
(I)求函数f(x)的解析式;
(2)若x∈[0,3),求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,-3),$\overrightarrow{c}$=(3,0),且$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,求x,y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设命题p:在直角坐标平面内,点M(sinα,cosα)与N(|α+1|,|α-2|)(α∈R)在直线x+y-2=0的异侧;命题q:若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角.以下结论正确的是(  )
A.“p∨q”为真,“p∧q”为真B.“p∨q”为假,“p∧q”为真”
C.“p∨q”为真,“p∧q”为假”D.“p∨q”为假,“p∧q”为假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow m=(a,b)$,$\overrightarrow{n}$=(2sinx,2cosx),其中a,b,x∈R.若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,满足f($\frac{π}{3}$)=2,且f(x)的导函数f′(x)的图象关于直线x=$\frac{5π}{6}$对称.
(1)求a,b的值;
(2)若关于x的方程f(x)+log2k=0在区间[0,$\frac{π}{2}$]上总有实数解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案