18£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=tsin\frac{¦Ð}{3}}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡Ù0£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬ÇúÏßC3µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-6¦Ñcos¦È+8=0£®
£¨1£©ÇóÇúÏßC1ÓëC2½»µãµÄ¼«×ø±ê£¨¦Ñ¡Ý0£¬0¡Ü¦È£¼2¦Ð£©
£¨2£©ÈôµãPÊÇÇúÏßC3ÉÏÒ»¶¯µã£¬ÇóµãPµ½ÇúÏßC1µÄ×î¶Ì¾àÀ룮

·ÖÎö £¨1£©Ö±½Ó¸ù¾Ý²ÎÊý·½³ÌºÍÆÕͨ·½³Ì»¥»¯¹«Ê½½øÐд¦Àí¡¢¼«×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¹«Ê½½øÐл¯¼ò¼´¿É£»
£¨2£©Ê×ÏÈ£¬Çó½âÔ²Ðĵ½Ö±ÏߵľàÀ룬Ȼºó£¬¸Ã¾àÀëÈ¥µô°ë¾¶¼´ÎªËùÇó£®

½â´ð ½â£º¸ù¾ÝÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=tsin\frac{¦Ð}{3}}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡Ù0£©£¬
µÃy=$\sqrt{3}x$£¬
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬
¡àx2+y2=2y£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{{x}^{2}+{y}^{2}=2y}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}}\\{y=\frac{3}{2}}\end{array}\right.$£¬
ËüÃÇͼÏóµÄ½»µãΪ£º£¨0£¬0£©£¬£¨$\frac{\sqrt{3}}{2}$£¬$\frac{3}{2}$£©£¬
¶ÔÓ¦µÄ¼«×ø±êΪ£¨0£¬0£©£¬£¨$\sqrt{3}$£¬$\frac{¦Ð}{3}$£©£¬
£¨2£©ÇúÏßC3µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-6¦Ñcos¦È+8=0£¬
¶ÔÓ¦µÄÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2-6x+8=0£¬
¡à£¨x-3£©2+y2=1£¬
¹ÊÔ²ÐÄΪ£¨3£¬0£©£¬°ë¾¶Îªr=1£¬
Ô²ÐÄ£¨3£¬0£©µ½Ö±Ïßy=$\sqrt{3}$xµÄ¾àÀëΪd=$\frac{3\sqrt{3}}{2}$£¬
¡àµãPµ½ÇúÏßC1µÄ×î¶Ì¾àÀë$\frac{3\sqrt{3}}{2}-1$£®

µãÆÀ ±¾ÌâÖص㿼²éÁ˼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯¡¢²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯¹«Ê½µÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®a=2£¬b=$\root{3}{9}$£¬c=$\root{6}{51}$£¬ÊԱȽÏa£¬b£¬cµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚËıßÐÎABEFÖУ¬AF¡ÍFB£¬OΪABµÄÖе㣬¾ØÐÎABCDËùÔÚµÄƽÃæ´¹Ö±ÓÚƽÃæABEF£®
£¨1£©ÇóÖ¤£ºAF¡ÍƽÃæCBF£»
£¨2£©ÉèFCµÄÖеãΪM£¬ÇóÖ¤£ºOM¡ÎƽÃæDAF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªa2+b2=5£¬ax+by=5£¬ÓÿÂÎ÷²»µÈʽÇóx2+y2µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®·Ö½âÒòʽ£ºx2-4xy-4y2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=-x3+x2+b£¬Èôf£¨x£©ÔÚx¡Ê[-$\frac{1}{2}$£¬1]ÉϵÄ×î´óֵΪ1£¬ÔòʵÊýb=$\frac{5}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª·½³Ì×é$\left\{\begin{array}{l}{2x-3y+z=0}\\{x-2y+3z=0}\end{array}\right.$£¨xyz¡Ù0£©£¬Çóx£ºy£ºz£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ì«ºþÖÐÓÐһСµºC£¬ÑØÌ«ºþÓÐÒ»ÌõÕýÄÏ·½ÏòµÄ¹«Â·£¬Ò»Á¾Æû³µÔÚ¹«Â·A´¦²âµÃСµºÔÚ¹«Â·µÄÄÏÆ«Î÷15¡ã·½ÏòÉÏ£¬Æû³µÐÐÊ»1kmµ½´ïB´¦ºó£¬ÓÖ²âµÃСµºÔÚÄÏÆ«Î÷75¡ãµÄ·½ÏòÉÏ£¬ÔòСµºµ½¹«Â·µÄ¾àÀëÊÇ$\frac{\sqrt{3}}{6}$km£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®º¯Êýf£¨x£©=$\left\{\begin{array}{l}{x-4£¬x¡Ý4}\\{f£¨x+3£©£¬x£¼4}\end{array}\right.$£¬Ôòf£¨-1£©=1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸